
3 4 4 5 b 0 3 7 6 5 3 1 b

?
I

I

Jack J. Dongma
David V4. Walker

ORNL/TM-12404

Engineering Physics and Mathematics Division ;3(j 5
j 7,

Mathematical Sciences Section

T H E DESIGN OF LINEAR ALGEBRA LIBRARIES FOR

HIGH PERFORMANCE COMPUTERS

Jack J . Dongarra $5
David W. Walker f

Department of Computer Science
University of Tennessee
107 Ayres Hall
Knoxville, TN 37996-1301

Oak Ridge National Laboratory
P.O. Box 2008, Bldg. 6012
Oak Ridge, T N 37831-6367

5 Mathematical Sciences Section

Date Published: August 1993

Research was supported by the Applied Mathematical Sciences Re-
search Program of the Office of Energy Research, U.S. Department
of Energy, and by the Advanced Research Projects Agency under
contract DAAL03-91-G0047, administered by the Army Research
Office.

L I

Prepared by the
Oak Ridge National Laboratory

Oak Ridge, Tennessee 37831
managed by

Martin Marietta Energy Systems, Inc.
for the

U.S. DEPARTMENT OF ENERGY
under Contract No. DEAC05840R.2 1400

Contents

1 Introduction . 1
1.1 Dense Linear Algebra Libraries . 2

1.1.1 EISPACK . 2
1.1.2 LINPACK . 3
1.1.3 LAPACK . 4
1.1.4 ScaLAPACK . 5

1.2 Target Architectures . 6
1.3 High-Quality, Reusable, Mathematical Software 7

1.3.1 Performance . 7
1.3.2 Ease-Of-Use . 8
1.3.3 Range-Of-Use . 8

2 The BLAS as the Key to Portability . 8
3 Block Algorithms and Their Derivation . 10

3.1 Deriving a Block Algorithm . 11
3.2 Examples of Block Algorithms in LAPACK . 12

4 LU Factorization . 15
4.1 Uses of LU Factorization in Science and Engineering 15
4.2 Derivation of a Block Algorithm for LU Factorization 16

5 Data Distribution . 18
6 Parallel Implementation . 22
7 Optimization, Tuning, and Trade-offs . 30

7.1 Mapping Logical Memory to Physical Memory 30
7.1.1 Assignment of Processes to Processors 30
7.1.2 Layout of Local Process Memory . 31

7.2 Tradeoifk between Load Balance and Communication Latency 32
7.3 Optimality and Pipelining Tradeoffs . 34

8 Conclusions and Future Research Directions . 36
8.1 Portability, Scalability, and Standards . 36
8.2 Alternative Approaches . 39

9 References . 41

THE DESIGN OF LINEAR ALGEBRA LIBRARIES FOR

HIGH PERFORMANCE COMPUTERS

Jack J . Dongarra

David W. Walker

Abstract

This paper discusses the design of linear algebra libraries for high performance comput-
ers. Particular emphasis is placed on the development of scalable algorithms for MIMD
distributed memory concurrent computers. A brief description of the EISPACK, LIN-
PACK, and LAPACK libraries is given, followed by an outline of ScaLAPACK, which is a
distributed memory version of LAPACK currently under development. The importance of
block-partitioned algorithms in reducing the frequency of data movement between differ-
ent levels of hierarchical memory is stressed. The use of such algorithms helps reduce the
message startup costs on distributed memory concurrent computers. Other key ideas in
our approach are the use of distributed versions of the Level 3 Basic Linear Algebra Sub-
programs (BLAS) as computational building blocks, and the use of Basic Linear Algebra
Communication Subprograms (BLACS) as communication building blocks. Together the
distributed BLAS and the BLACS can be used to construct higher-level algorithms, and
hide many details of the parallelism from the application developer.

The block-cyclic data distribution is described, and adopted as a good way of dis-

tributing block-partitioned matrices. Block-partitioned versions of the Cholesky and LU
factorizations are presented, and optimization issues associated with the implementation
of the LU factorization algorithm on distributed memory concurrent computers are dis-
cussed, together with its performance on the Intel Delta system. Finally, approaches to
the design of library interfaces axe reviewed.

- v -

1. Introduction

The increasing availability of advanced-architecture computers is having a very significant effect

on all spheres of scientific computation, including algorithm research and software development

in numerical linear algebra. Linear algebra-in particular. the solution of linear systems of

equations-lies at the heart of most calculations in scientific computing. This chapter dis-

cusses some of the recent developments in linear algebra designed to exploit these advanced-

architecture computers. Particular attention will be paid to dense factorization routines, such

as the Cholesky and LU factorizations, and these will be used as examples to highlight the most

important factors that must be considered in designing linear algebra software for advanced-

architecture computers. We use these factorization routines for illustrative purposes not only

because they are relatively simple, but also because of their importance in several scientific

and engineering applications that make use of boundary element methods. These applications

include electromagnetic scattering and computational fluid dynamics problems, as discussed in

more detail in Section 4.1.

Much of the work in developing linear algebra software for advanced-architecture computers

is motivated by the need to solve large problems on the fastest computers available. In this

chapter, we focus on four basic issues: (1) the motivation for the work; (2) the development of

standards for use in linear algebra and the building blocks for a library; (3) aspects of algorithm

design and parallel implementation; and (4) future directions for research.

For the past 15 years or so, there has been a great deal of activity in the area of algorithms

and software for solving linear algebra problems. The linear algebra community has long

recognized the need for help in developing algorithms into software libraries, and several years

ago, as a community effort, put together a de fac to standard for identifying basic operations

required in linear algebra algorithms and software. The hope was that the routines making up

this standard, known collectively as the Basic Linear Algebra Subprograms (BLAS), would be

efficiently implemented on advanced-architecture computers by many manufacturers, making

it possible to reap the portability benefits of having them efficiently implemented 011 a wide

range of machines. This goal has been largely realized.

The key insight of our approach to designing linear algebra algorithms for advanced archi-

tecture computers is that the frequency with which data are moved between different levels of

the memory hierarchy must be minimized in order to attain high performance. Thus, our main

algorithmic approach for exploiting both vectorization and parallelism in our implementations

is the use of block-partitioned algorithms, particularly in conjunction with highly-tuned kernels

for performing matrix-vector and matrix-matrix operations (the Level 2 and 3 BLAS). In gen-

eral, the use of block-partitioned algorithms requires data to be moved as blocks, rather than as

vectors or scalars, 60 that although the total amount of data moved is unchanged, the latency

- 2 -

(or startup cost) associated with the movement is greatiy reduced because fewer messages are

needed to move the data.

A second key idea is that the performance of an algorithm can be tuned by a user by varying

the parameters that specify the data layout. On shared memory machines. this is controlled

by the block size, while on distributed memory machines it is controlled by the block size a n d

the configuration of the logical process mesh. as described in more detail in Section 5.

In Section 1, we first give an overview of some of the major software projects aimed at

solving dense linear algebra problems. Next, we describe the types of machine that benefit

most from the use of block-partitioned algorithms, and discuss what is meant by high-quality.

reusable software for advanced-architecture computers. Section 2 discusses the role of the BLAS

in portability and performance on high-performance computers. We discuss the design of these

building blocks, and their use in block-partitioned algorithms, in Section 3. Section 4 focuses

on the design of a block-partitioned algorithm for LU factorization, and Sections 5, 6, and 7

use this example to illustrate the most important factors in implementing dense linear algebra

routines on MIMD, distributed memory, concurrent computers. Section 5 deals with the issue

of mapping the data onto the hierarchical memory of a concurrent computer. The layout of

an application’s data is crucial in determining the performance and scalability of the parallel

code. In Sections 6 and 7, details of the parallel implementation and optimization issues are

discussed. Section 8 presents some future directions for investigation.

1.1. Dense Linear Algebra Libraries

Over the past twenty-five years, the first author has been directly involved in the develop-

ment of several important packages of dense linear algebra software: EISPACK, LINPACK,

LAPACK, and the BLAS. In addition, both authors are currently involved in the development

of ScaLAPACK, a scalable version of LAPACK for distributed memory concurrent computers.

In this section, we give a brief review of these packages-their history, their advantages, and

their limitations on high-performance computers.

1.1.1. EISPACK

EISPACK is a collection of Fortran subroutines that compute the eigenvalues and eigenvectors

of nine classes of matrices: complex general, complex Hermitian, real general, real symmetric,

real symmetric banded, real symmetric tridiagonal, special real tridiagonal, generalized real, and

generalized real symmetric matrices. In addition, two routines are included that use singular

value decomposition to solve certain least-squares problems.

EISPACK is primarily based 011 a collection of Algol procedures developed in the 1960s

and collected by J . H. Wilkinson and C. Reinsch in a volume entitled Linear Algebra in the

- 3 -

Handbook for Automatic Compvtatron [57] series. This volume was not designed to cover every

possible method of solution: rather, algorithms were chosen on the basis of their generality,

elegance, accuracy, speed, or economy of storage.

Since the release of EJSPACK in 1972, over ten thousand copies of the collection have been

distributed worldwide.

1.1.2. LINPACK

LINPACK is a collection of Fortran subroutines that analyze and solve linear equations and

linear least-squares problems. The package solves linear systems whose matrices are general,

banded, symmetric indefinite, symmetric positive definite, triangular, and tridiagonal square.

In addition, the package computes the QR and singular value decompositions of rectangular

matrices and applies them to least-squares problems.

LINPACK is organized around four matrix factorizations: LU factorization, pivoted Cholesky

factorization, QR factorization, and singular value decomposition. The term LU factorization

is used here in a very general sense to mean the factorization of a square matrix into a lower

triangular part and an upper triangular part, perhaps with pivoting. These factorizations will

be treated at greater length later, when the actual LINPACK subroutines are discussed. But

first a digression on organization and factors influencing LINPACK’s efficiency is necessary.

LINPACK uses column-oriented algorithms to increase efficiency by preserving locality of

reference. This means that if a program references an item in a particular block, the next

reference is likely to be in the same block. By column orientation we mean that the LINPACK

codes always reference arrays down columns, not across rows. This works because Fortran

stores arrays in column major order. Thus, as one proceeds down a column of an array, the

memory references proceed sequentially in memory. On the other hand, as one proceeds across

a row, the memory references jump across memory, the length of the jump being proportional

to the length of a column. The effects of column orientation are quite dramatic: on systems

with virtual or cache memories, the LINPACK codes will significantly outperform codes that

are not column oriented. We note, however, that textbook examples of matrix algorithms are

seldom column oriented.

Another important factor influencing the efficiency of LINPACK is the use of the Level 1

BLAS; there are three effects.

First, the overhead entailed in calling the BLAS reduces the efficiency of the code. This

reduction is negligible for large matrices, but, it can be quite significant for small matrices. The

matrix size at which it becomes unimportant varies from system to system; for square matrices

it is typically between n = 25 and n = 100. If this seems like an unacceptably large overhead,

remember that on many modern systems the solution of a system of order 25 or less is itself a

- 4 -

negligible calculation. Konetheless, it cannot be denied that a person whose programs depend

critically on solving small matrix problems in inner loops will be better off with ULAS-less

versions of the LINPACK codes. Fortunately, the BLAS can be removed from the smaller,

more frequently used program in a short editing session.

Second. the HLAS improve the efficiency of programs when they are run on nonoptimizirig

compilers. This is because doubly subscripted array references in the inner loop of the algorithm

are replaced by singly subscripted array references in the appropriate BLAS. The effect can be

seen for matrices of quite small order, and for large orders the savings are quite significant.

Finally, improved efficiency can be achieved by coding a set of BLAS [17] to take advantage

of the special features of the computers on which LINPACK is being run. For most computers,

this simply means producing machine-language versions. However, the code can also take

advantage of more exotic architectural features, such as vector operations.

Further details about the BLAS are presented in Section 2.

1.1.3. LAPACK

LAPACK [14] provides routines for solving systems of simultaneous linear equations, least-

squares solutions of linear systems of equations, eigenvalue problems, and singular value prob-

lems. The associated matrix factorizations (LU, Cholesky, QR, SVD, Schur, generalized Schur)

are also provided, as are related computations such as reordering of the Schur factorizations

and estimating condition numbers. Dense and banded matrices are handled, but not general

sparse matrices. In all areas, similar functionality is provided for real and complex matrices,

in both single and double precision.

The original goal of the LAPACK project was to make the widely used EISPACK and

LINPACK libraries run efficiently on shared-memory vector and parallel processors. On these

machines, LINPACK and EISPACK are inefficient because their memory access patterns dis-

regard the multilayered memory hierarchies of the machines, thereby spending too much time

moving data instead of doing useful floating-point operations. LAPACK addresses this problem

by reorganizing the algorithms to use block matrix operations, such as matrix multiplication,

in the innermost loops [3,14]. These block operations can be optimized for each architecture to

account for the memory hierarchy [2], and so provide a transportable way to achieve high effi-

ciency on diverse modern machines. Here we use the term “transportable” instead of “portable”

because, for fastest possible performance, LAPACK requires that highly optimized block matrix

operations be already implemented on each machine. In other words, the correctness of the

code is portable, but high performance is not-if we limit ourselves to a single Fortran source

code.

LAPACK can be regarded as a successor to LINPACK and EISPACK. It has virtually all the

- 5 -

capabilities of these two packages and mucli more besides. LAPACK improves on LINPACE;

and EISPACK in four main respects: speed, accuracy, robustness and functionality. V’hile

LIWPACE; and EISPACK are based on the vector operation kernels of the Level 1 BLAS,

LAPACK was designed at the outset to exploit the Level 3 BLAS -a set of specifications

for Fortran subprograms that do various types of matrix multiplication and the solution of

triangular systems with multiple right-hand sides. Because of the coarse granularity of the

Level 3 BLAS operations, their use tends to promote high efficiency on many high-performance

computers, particularly if specially coded implementations are provided by the manufacturer.

1.1.4. ScaLAPACK

The ScaLAPACK software library, scheduled for completion by the end of 1994, will extend

the LAPACK library to run scalably on MIMD, distributed memory, concurrent computers

[10,11]. For such machines the memory hierarchy includes the off-processor memory of other

processors, in addition to the hierarchy of registers, cache, and local memory on each processor.

Like LAPACK, the ScaLAPACK routines are based on block-partitioned algorithms in order

to minimize the frequency of data movement between different levels of the memory hierarchy.

The fundamental building blocks of the ScaLAPACK library are distributed memory versions of

the Level 2 and Level 3 BLAS, and a set of Basic Linear Algebra Communication Subprograms

(BLACS) [16,26} for communication tasks that arise frequently in parallel linear algebra com-

putations. In the ScaLAPACK routines, all interprocessor communication occurs within the

distributed BLAS and the BLACS, so the source code of the top software layer of ScaLAPACK

looks very similar t o that of LAPACK.

We envisage a number of user interfaces to ScaLAPACK. Initially, the interface will be

similar to that of LAPACK, with some additional arguments passed to each routine to specify

the data layout. Once this is in place, we intend to modify the interface so the arguments t o each

ScaLAPACK routine are the same as in LAPACK. This will require information about the data

distribution of each matrix and vector to be hidden from the user. This may be done by means

of a ScaLAPACK initialization routine. This interface will be fully compatible with LAPACK.

Provided “dummy” versions of the ScaLAPACK initialization routine and the BLACS are added

to LAPACK, there will be no distinction between LAPACK and ScaLAPACK at the application

level, though each will link to different versions of the BLAS and BLACS. Following on from

this, we will experiment with object-based interfaces for LAPACK and ScaLAPACK, with the

goal of developing interfaces compatible with Fortran 90 [lo] and C++ [24].

- 6 -

1.2. Target Archi tectures

The EISPACK and LITPACK software libraries were designed for supercomputers used in the

1970s and early 1980s. such as the CDC-7600, Cyber 205, and Cray-1. These machines featured

multiple functional units pipelined for good performance [43]. The CDC-7600 was basically a

high-performance scalar computer, while the Cyber 205 and Cray-1 were early vector computers.

The development of LAPACK in the late 1980s was intended to make the EISPACK and

LINPACK libraries run efficiently on shared memory, vector supercomputers. The ScaLAPACK

software library will extend the use of LAPACK to distributed memory concurrent supercom-

puters. The development of ScaLAPACK began in 1991 and is expected to be completed by

the end of 1994.

The underlying concept of both the LAPACK and ScaLAPACK libraries is the use of

block-partitioned algorithms to minimize data movement between different levels in hierarchical

memory. Thus, the ideas discussed in this chapter for developing a library for dense linear

algebra computations are applicable to any computer with a hierarchical memory that (1)

imposes a sufficiently large startup cost on the movement of data between different levels

in the hierarchy, and for which (2) the cost of a context switch is too great to make fine

grain size multithreading worthwhile. Our target machines are, therefore, medium and large

grain size advanced-architecture computers. These include “traditional” shared memory, vector

supercomputers, such as the Cray Y-MP and C90, and MIMD distributed memory concurrent

supercomputers, such as the Intel Paragon, and Thinking Machines’ CM-5, and the more

recently announced IBM SP1 and Cray T3D concurrent systems. Since these machines have

only very recently become available, most of the ongoing development of the ScaLAPACK

library is being done on a 128-node Intel iPSC/860 hypercube and on the 520-node Intel Delta

system.

The Intel Paragon supercomputer can have up to 2000 nodes, each consisting of an i860

processor and a communications processor. The nodes each have at least 16 Mbytes of memory,

and are connected by a high-speed network with the topology of a two-dimensional mesh. The

CM-5 from Thinking Machines Corporation [53] supports both SIMD and MIMD programming

models, and may have up to 16k processors, though the largest CM-5 currently installed has

1024 processors. Each CM-5 node is a Sparc processor and up to 4 associated vector processors.

Point-to-point communication between nodes is supported by a data network with the topology

of a “fat tree” [46]. Global communication operations, such as synchronization and reduction,

are supported by a separate control network. The IBM SP1 system is based on the same

RISC chip used in the IBM Rs/SOOO workstations and uses a multistage switch to connect

processors. The Cray T3D uses the Alpha chip from Digital Equipment Corporation, and

connects the processors in a three-dimensional torus.

Future advances in compiler and hardware technologies in the mid to late 1990s are expected

to make multithreading a viable approach for masking communication costs. Sincr thc blocks

in a block-partitioned algorithm can be regarded as separate threads, our approach will still be

applicable on machines that exploit medium and coarse grain size multithreading.

1.3. High-Quality, Reusable, Mathematical Software

In developing a library of high-quality subroutines for dense linear algebra computations the

design goals fall into three broad classes:

0 performance

a ease-of-use

0 range-of-use

1.3.1. Performance

Two important performance metrics are concurrent efleiency and scalability. We seek good

performance characteristics in our algorithms by eliminating, as much as possible, overhead

due to load imbalance, data movement, and algorithm restructuring. The way the data are

distributed (or decompwed) over the memory hierarchy of a computer is of fundamental im-

portance to these factors. Concurrent efficiency, c, is defined as the concurrent speedup per

processor [32], where the concurrent speedup is the execution time, Tseq, for the best sequential

dgorithm running on one processor of the concurrent computer, divided by the execution time,

TI of the parallei algorithm running on Np processors. When direct methods are used, as in

LU factorization, the concurrent efficiency depends on the problem size and the number of

processors, so on a given parallel computer and for a fixed number of processors, the running

time should not vary greatly for problems of the same size. Thus, we may write,

where N represents the problem size. In dense linear algebra computations, the execution

time is usually dominated by the floating-point operation count, so the concurrent efficiency is

related t o the performance, G, measured in floating-point operations per second by,

(2) NP G(N, NP) = - Np)
tcaic

where tcdc is the time for one floating-point operation. For iterative routines, such as eigen-

solvers, the number of iterations, and hence the execution time, depends not only on the problem

size, but also on other characteristics of the input data, such as condition number. A parallel

- 8 -

algorithm is said to be scalable [3T] if the concurrent efficiency depends on the problem size

and number of processors only through their ratio. This ratio is simply the problem size per

processor, often referred to as the granularity. Thus, for a scalable algorithm, the concurrent

efficiency is constant as the number of processors increases while keeping the granularity fixed.

Alternatively, Eq. 2 shows that this is equivalent to saying that, for a scalable algorithm, the

performance depends linearly on the number of processors for fixed granularit,y.

1.3.2. Ease-Of-Use

Ease-of-use is concerned with factors such as portability and the user interface to the library.

Portability, in its most inclusive sense, means that the code is written in a standard language,

such as Fortran, and that the source code can be compiled on an arbitrary machine to produce

a program that will run correctly. We call this the “mail-order software” model of portability,

since it reflects the model used by software servers such as nellib [20]. This notion of portability

is quite demanding. It requires that all relevant properties of the computer’s arithmetic and

architecture be discovered at runtime within the confines of a Fortran code. For example, if

it is important to know the overflow threshold for scaling purposes, it must be determined

at runtime without overflowing, since overflow is generally fatal. Such demands have resulted

in quite large and sophisticated programs [28,44] which must be modified frequently to deal

with new architectures and software releases. This “mail-order” notion of software portability

also means that codes generally must be written for the worst possible machine expected to

be used, thereby often degrading performance on all others. Ease-of-use is also enhanced if

implementation details are largely hidden from the user, for example, through the use of an

object-based interface to the library [24].

1.3.3. Range-Of-Use

Range-of-use may be gauged by how numerically stable the algorithms are over a range of input

problems, and the range of data structures the library will support. For example, LINPACK

and EISPACK deal with dense matrices stored in a rectangular array, packed matrices where

only the upper or lower half of a symmetric matrix is stored, and banded matrices where only

the nonzero bands are stored. In addition, some special formats such as Householder vectors

are used internally to represent orthogonal matrices. There are also sparse matrices, which may

be stored in many different ways; but in this paper we focus on dense and banded matrices,

the mathematical types addressed by LINPACK, EISPACK, and LAPACK.

2. The BLAS as the Key to Portability

At least three factors affect the performance of portable Fortran code

- 9 -

1. Vectorization. Designing vectorizable algorithms in linear algebra is usually straight-

forward. Indeed, for many computations there are several variants, all vectorizable, but

with different characteristics in performance (see, for example, [15]). Linear algebra algo-

rithms can approach the peak performance of many machines-principally becausr peak

performance depends on some form of chaining of vector addition and multiplication 01)-

erations, and this is just what the algorithnls require. However, when the algorithms are

realized in straightforward Fortran 77 code, the performance may fall well short of the

expected level, usually because vectorizing Fortran compilers fail to minimize the number

of memory references-that is, the number of vector load and store operations.

2. Data movement. What often limits the actual performance of a vector, or scalar,

floating-point unit is the rate of transfer of data between different levels of memory in

the machine. Examples include the transfer of vector operands in and out of vector

registers, the transfer of scalar operands in and out of a high-speed scalar processor, the

movement of data between main memory and a high-speed cache or local memory, paging

between actual memory and disk storage in a virtual memory system, and interprocessor

communication on a distributed memory concurrent computer.

3. Parallelism. The nested loop structure of most linear algebra algorithms offers con-

siderable scope for loop-based parallelism. This is the principal type of parallelism that

LAPACK and ScaLAPACK presently aim to exploit. On shared memory concurrent com-

puters, this type of parallelism can sometimes be generated automatically by a compiler,

but often requires the insertion of compiler directives. On distributed memory concur-

rent computers, data must be moved between processors. This is usually done by explicit

calls to message passing routines, although parallel language extensions such as Coherent

Parallel C [31] and Split-C I131 do the message passing implicitly.

The question arises, “How can we achieve sufficient control over these three factors to obtain

the levels of performance that machines can offer?’’ The answer is through use of the BLAS.

There are now three levels of BLAS:

Level 1 BLAS [45]: for vector operations: such as y +- Q X + y

Level 2 BLAS [IS): for matrix-vector operations, such as y +- aAz + By

Level 3 BLAS 117’1: for matrix-matrix operations, such as C +- aAB + PC.
Here, A, B and C are matrices, x and y are vectors, and a and /3 are scalars.

The Level 1 BLAS are used in LAPACK, but for convenience rather than for performance:

they perform an insignificant fraction of the computation, and they cannot achieve high effi-

ciency on most modern supercomputers.

- 1 0 -

Level 2: 2 +- U r
Level 3: R +- 0-B

I 293
I 310

Table 1: Speed (Megaflops) of Level 2 and Level 3 BLAS Operations on a CRAY *-hlP. All
matrices are of order 500: I’ is upper triangular

1 h’uniber of processors: I 11 2 1 4 1 8 1

544 I 898 1613
620 I 1240 2425

Level 2: y-cxaAz++y I 311 I 611 I 1197 I 2285
Level 3: C - ai lB + 4C 1 312 [623 1 1247 I 2425

Level 2: 2 + U - l t 1 272 I 374 I 479 1 584
Level 3: B + U-’B I 309 I 618 I 1235 I 2398

The Level 2 BLAS can achieve near-peak performance on many vector processors, such as a

single processor of a CRAY X-MP or Y-MP, or Convex C-2 machine. However, on other vector

processors such as a CRAY-2 or an IBM 3090 VF, the performance of the Level 2 BLAS i s

limited by the rate of data movement between different levels of memory.

The Level 3 BLAS overcome this limitation. This third level of BLAS performs 0(n3)

floating-point operations on O(n2) data, whereas the Level 2 BLAS perform only O(n2) op-

erations on 0(n2) data. The Level 3 BLAS also allow us to exploit parallelism in a way that

i s transparent to the software that calls them. While the Level 2 BLAS offer some scope for

exploiting parallelism, greater scope is provided by the Level 3 BLAS, as Table 1 illustrates.

3. Block Algorithms and Their Derivation

It is comparatively straightforward to recode many of the algorithms in LINPACK and EIS-

PACK so that they call Level 2 BLAS. Indeed, in the simplest cases the same floating-point

operations are done, possibly even in the same order: it is just a matter of reorganizing the

software. To illustrate this point, we consider the Cholesky factorization algorithm used in the

LINPACK routine SPOFA, which factorizes a symmetric positive definite matrix as A = U T U .

We consider Cholesky factorization because the: algorithm is simple, and no pivoting is required.

In Section 4 we shall consider the slightly more complicated example of LU factorization.

Suppose that after j - 1 steps the block A00 in the upper lefthand corner of A has been

factored as A00 = U& UOO. The next row and column of the factorization can then be computed

by writing A = UTU as

where bj , c, , v, , and w, are column vectors of length j - 1, and aj, and ujj are scalars. Equating

- 11 -

coefficients of the j t h column, we obtain

Since Uoo has already been computed, we can compute vj and u j j from the equations

The body of the code of the LINPACK routine SPOFA that implements the above method

is shown in Figure 1. The same computation recoded in “LAPACK-style” to use the Level 2

BLAS routine STRSV (which solves a triangular system of equations) is shown in Figure 2.

The call to STMV has replaced the loop over K which made several calls to the Level 1 BLAS

routine SDOT. (For reasons given beiow, this is not the actual code used in LAPACK - hence

the term “LAPACK-style” .)
This change by itself is sufficient to result in large gains in performance on a number of

machines-for example, from 72 to 251 megaflops for a matrix of order 500 on one processor

of a CRAY Y-MP. Since this is 81% of the peak speed of matrix-matrix multiplication on this

processor, we cannot hope to do very much better by using Level 3 BLAS.

We can, however, restructure the algorithm at a deeper level to exploit the faster speed of the

Level 3 BLAS. This restructuring involves recasting the algorithm as a block algorithm-that

is, an algorithm that operates on blocks or submatrices of the original matrix.

3.1. Deriving a Block Algori thm

To derive a block form of Cholesky factorization, we partition the matrices as shown in Figure

4, in which the diagonal blocks of A and U are square, but of differing sizes. We assume that

the first block has already been factored as Aoo = U&Uoo, and that we now want to determine

the second block column of U consisting of the blocks Uol and U ~ I . Equating submatrices in

the second block of columns, we obtain

Hence, since Uoo has already been computed, we can compute Uol as the solution to the equation

- 1 2 -

IBM 3090 VF,
1 proc.

24
49
50

j-variant: LINPACK 23
j-variant: using Level 2 BLAS ~

j-variant: using Level 3 BLAS ~

i-variant: using Level 3 BLAS 1

CRAE- Y-MP, CRAJ' Y-&lP. I
1 proc. 8 proc. '

72 72 I

287 1225 ~

290 1414

251 378 ~

by a call to the Level 3 BLAS routine STRSM; and then we can compute U11 from

This involves first updating the symmetric submatrix All by a call to the Level 3 BLAS

routine SSYRK, and then computing its Cholesky factorization. Since Fortran does not allow

recursion, a separate routine must be called (using Level 2 BLAS rather than Level 3), named

SPOTF2 in Figure 3. In this way, successive blocks of columns of U are computed. The

LAPACK-style code for the block algorithm is shown in Figure 3. This code runs at 49 megaflops

on an IBM 3090, more than double the speed of the LINPACK code. On a GRAY Y-MP, the

use of Level 3 BLAS squeezes a little more performance out of one processor, but makes a large

improvement when using all 8 processors.

But that is not the end of the story, and the code given above is not the code actually used

in the LAPACK routine SPOTRF. We mentioned earlier that for many linear algebra computa-

tions there are several algorithmic variants, often referred to as i-, j-, and k-variants, according

to a convention introduced in [15] and used in [36]. The same is true of the corresponding block

algorithms.

It turns out that the j-variant chosen for LINPACK, and used in the above examples, is

not the fastest on many machines, because it performs most of the work in solving triangular

systems of equations, which can be significantly slower than matrix-matrix multiplication. The

variant actually used in LAPACK is the i-variant, which relies on matrix-matrix multiplication

for most of the work.

Table 2 summarizes the results.

3.2. Examples of Block Algorithms in LAPACK

Having discussed in detail the derivation of one particular block algorithm, we now describe

examples of the performance achieved with two well-known block algorithms: LU and Cholesky

factorizations. No extra floating-point operations nor extra working storage are required for

either of these simple block algorithms. (See Gallivan et al. [33] and Dongarra et al. [19] for

- 1 3 -

info = j + 1 i do s j = = O.OeO O s n-i
jml = j
if (jml .ge. 1) then
do k = 0, jml - 1
t = a(k, j) - sdot (k,a(O ,k) , l,a(O, j) ,l)
t = t/a(k.k)
a(k,j) = t
s = s t t*t

end do
end if
s = a(j,j) - s
if (s .le. O.Oe0) go to 40
a(j,j) = sqrt(s)
end do

Figure 1: The body of the LINPACK routine SPOFA for Cholesky factorization.

do j = 0, n - I
call strsv(‘upper’, ’transpose), ’non-unit’, j, a, Ida, a(O,j), 1)
s = a(j,j) - sdot(j, a(O,j>, 1, a(O,j), 1 1
if (t3 . l e . zero) go to 20
a(j,j) = s q r t (s 1

end do

Figure 2: The body of the “LAPACK-style” routine SPOFA for Cholesky factorization.

do j = 0, n-1, nb
jb = min(nb, n-j 1
call strsm(’left’, yuppery, ’transpose’, ’non-unit’, j , jb, one,

call ssyrh(‘upper’, ytransposey, jb, j. -one, a(O,j), Ida, one,

call spotf2(’upper’, jb, a (j , j) , Ida, in fo)
i f (in fo .ne. O) go to 20

a, Ida, a(O,j), Ida)

a(j.j), Ida 1

end do

Figure 3: The body of the “LAPACK-style’’ routine SPOFA for block Cholesky factorization.
In this code fragment, nb denotes the width of the blocks.

- 14 -

Figure 4: Partitioning of A , U T , and U into blocks. It is assumed that the first block has
already been factored as A00 = U&Uoo, and we next want to determine the block column
consisting of Uol and U11. Note that the diagonal blocks of A and U are square matrices.

Table 3: Speed (Megaflops) of SGETRF/DGETRF for Square Matrices of Order n

1 Machine I No. of I Block 11 Values of n

IBM RISC/6000-530
Alliant FX/8
IBM 3090J VF
Convex C-240
CRAY Y-MP
CRAY-2
Siemens/Fujitsu VP 400-EX
NEC SX2
CRAY Y-MP

processors
1
8
1
4
1
1
1
1
8

16
64
64
1

64
64
1

64 -

-
300
29
32
52
82

254
292
222
412
920

-

-

112

surveys of algorithms for dense linear algebra on high-performance computers.)

Table 3 illustrates the speed of the LAPACK routine for LU factorization of a real matrix,

SGETRF in single precision on CRAY machines, and DGETRF in double precision on all other

machines. Thus, 64bi t floating-point arithmetic is used on all machines tested. A block size of

1 means that the unblocked algorithm is used, since it is faster than - or at least as fast as - a

block algorithm.

LAPACK is designed to give high efficiency on vector processors, high-performance “su-

perscalar” workstations, and shared memory multiprocessors. LAPACK in its present form is

less likely to give good performance on other types of parallel architectures (for example, mas-

sively parallel SIMD machines, or MIMD distributed memory machines), but the ScaLAPACK

project, described in Section 1.1.4, is intended to adapt LAPACK to these new architectures.

LAPACK can also be used satisfactorily on all types of scalar machines (PCs, workstations,

mainframes).

Table 4 gives similar results for Cholesky factorization, extending the results given in Table 2.

- 1 5 -

Table 4: Speed (hlegafiops) of SPOTRF/DPOTRF for Matrices of Order n. Here T!PLO =
‘U’, so the factorization is of the form A = TiTCJ

I processors
IBM RISC/6000-530 1
Alliant FX/8 8
IBM 30905 VF 1
Convex C-240 4
CRAY Y-MP 1
CRAY-2 1

NEC SX2 1
CRAY Y-MP 8

Siernens/Fujitsu VI‘ 400-EX 1

1 Machine 1 KO. of 1 Block 11 Values of n
size 100
32 21
16 10
48 26
64 32
1 126

64 109
1 33
1 135

32 146

103

819

LAPACK, like LINPACK, provides LU and Cholesky factorizations of band matrices. The

LINPACK algorithms can easily be restructured to use Level 2 BLAS, though restructuring

has little effect on performance for matrices of very narrow bandwidth. It is also possible to

use Level 3 BLAS, at the price of doing some extra work with zero elements outside the band

[22]. This process becomes worthwhile for large matrices and semi-bandwidth greater than 100

or so.

4. LU Factorization

In this section, we first discuss the uses of dense LU factorization in several fields. We next

develop a block-partitioned version of the k, or right-looking, variant of the LU factorization

algorithm. In subsequent sections, the parallelization of this algorithm is described in detail in

order to highlight the issues and considerations that must be taken into account in developing

an efficient, scalable, and transportable dense linear algebra library for MIMD, distributed

memory, concurrent computers.

4.1. Uses of LU Factorization in Science and Engineering

A major source of large dense linear systems is problems involving the solution of boundary inte-

gral equations. These are integral equations defined on the boundary of a region of interest. All

examples of practical interest compute some intermediate quantity on a two-dimensional bound-

ary and then use this information to compute the final desired quantity in three-dimensional

space. The price one pays for replacing three dimensions with two is that what started as a

sparse problem in O(n3) variables is replaced by a dense problem in O(n2).

Dense systems of linear equations are found in numerous applications, including:

- 16 -

e airplane wing design;

e radar cross-section studies;

e flow around ships and other off-shore constructions:

4 diffusion of solid bodies in a liquid:

4 noise reduction; and

0 diffusion of light through small particles.

The electromagnetics community is a major user of dense linear systems solvers. Of par-

ticular interest to this community is the solution of the secalled radar cross-section problem.

In this problem, a signal of fixed frequency bounces off an object; the goal is to determine the

intensity of the reflected signal in all possible directions. The underlying differential equation

may vary, depending on the specific problem. In the design of stealth aircraft, the principal

equation is the Helmholtz equation. To solve this equation, researchers use the method of

moments [38,56]. In the case of fluid flow, the problem often involves solving the Laplace or

Poisson equation. Here, the boundary integral solution is known as the panel method [40,41], so

named from the quadrilaterals that discretize and approximate a structure such as an airplane.

Generally, these methods are called bounda y element methods.

Use of these methods produces a dense linear system of size O (N) by O (N) , where N is

the number of boundary points (or panels) being used. It is not unusual to see size 3N by 3 N ,

because of three physical quantities of interest at every boundary element.

A typical approach to solving such systems is to use LU factorization. Each entry of the

matrix is computed as an interaction of two boundary elements. Often, many integrals must be

computed. In many instances, the time required to compute the matrix is considerably larger

than the time for solution.

Only the builders of stealth technology who are interested in radar cross-sections are con-

sidering using direct Gaussian elimination methods for solving dense linear systems. These

systems are always symmetric and complex, but not Hermitian.

For further information on various methods for solving large dense linear algebra problems

that arise in computational fluid dynamics, see the report by Alan Edelman [30].

4.2. Derivation of a Block Algorithm for LU Factorization

Suppose the M x N matrix A is partitioned as shown in Figure 5, and we seek a factorization

A = L U , where the partitioning of L and U is also shown in Figure 5. Then we may write,

- 1 7 -

Loo

LIO

0

Ll 1

Figure 5: Block LU factorization of the partitioned matrix A . A00 is r x r , A01 is r x (N - r) ,
A10 is (M - r) x r , and A11 is (M - r) x (N - r) . LOO and ,511 are lower triangular matrices
with 1’s on the main diagonal, and UOO and U11 are upper triangular matrices.

Liouoo = Aio (4)

Loouoi = Aoi (5)

LlOUOl 3- Ll1U11 = All (6)

where ,400 is r x r , A01 is r x (N - r) , A10 is (M - r) x r, and At1 is (M - r) x (N - r) . LOO

and 1511 are lower triangular matrices with 1s on the main diagonal, and UOO and U11 are upper

triangular matrices.

Equations 3 and 4 taken together perform an LU factorization on the first M x r panel of

A (i.e., ,400 and Alo). Once this is completed, the matrices LOO, LID, and UOO are known, and

the lower triangular system in Eq. 5 can be solved to give Uol. Finally, we rearrange Eq. 6 as,

From this equation we see that the problem of finding L11 and Ul1 reduces to finding the LU

factorization of the (M ... r) x (N - r) matrix Ail . This can be done by applying the steps

outlined above to A;, instead of to A. Repeating these steps K times, where

we obtain the LU factorization of the original M x N matrix A. For an in-place algorithm, A

is overwritten by L and U - the 1s on the diagonal of L do not need to be stored explicitly.

Similarly, when A is updated by Eq. 7 this may also be done in place.

After k of these K steps, the first kr columns of L and the first kr rows of U have been

evaluated, and matrix A has been updated to the form shown in Figure 6, in which panel B is

(M - k r) x r and C is r x (N - (k - 1)r). Step k + 1 then proceeds as follows,

- 1 8 -

p-....-............ ,................ icI

Figure 6: Stage t + 1 of the block LU factorization algorithm showing how the panels B and C ,
and the trailing submatrix E are updated. The trapezoidal submatrices L and U have already
been factored in previous steps. L has kr columns, and U has t r rows. In the step shown
another r columns of L and r rows of U are evaluated.

1. factor B to form the next panel of L , performing partial pivoting over rows if necessary

(see Figure 14). This evaluates the matrices L O , L1, and Uo in Figure 6.

2. solve the triangular system LoUl = C to get the next row of blocks of U .

3. do a rank-r update on the trailing submatrix E , replacing it with E' = E - L I U ~ .

The LAPACK implementation of this form of LU factorization uses the Level 3 BLAS

routines xTRSM and xGEMM to perform the triangular solve and rank-r update. We can

regard the algorithm as acting on matrices that have been partitioned into blocks of r x r

elements, as shown in Figure 7.

5. Data Distribution

The fundamental data object in the LU factorization algorithm presented in Section 4.2 is a

block-partitioned matrix. In this section, we describe the block-cyclic method for distributing

such a matrix over a two-dimensional mesh of processes, or template. In general, each process

has an independent thread of control, and with each process is associated some local memory

directly accessible only by that process. The assignment of these processes to physical processors

is a machine-dependent optimization issue, and will be considered later in Section 7.
An important property of the class of data distribution we shall use is that independent

decompositions are applied over rows and columns. We shall, therefore, begin by considering

the distribution of a vector of M data objects over P processes. This can be described by a

mapping of the global index, m, of a data object to an index pair (p, i) , where p specifies the

- 1 9 -

Figure 7: Block-partitioned matrix A. Each block A,,, consists of r x r matrix elements

process to which the data object is assigned, and i specifies the location in the local memory

of p at which it is stored. We shall assume 0 5 m < A4 and 0 5 p < P.

Two common decompositions are the block and the cyclrc decompositions [55,32]. The block

decomposition, that is often used when the computational load is distributed homogeneously

over a regular data structure such as a Cartesian grid, assigns contiguous entries in the global

vector to the processes in blocks.

where L = [M/P1. The cyclic decomposition (also known as the wrapped or scattered decom-

position) is commonly used to improve load balance when the computational load is distributed

inhomogeneously over a regular data structure. The cyclic decomposition assigns consecutive

entries in the global vector to successive different processes,

Examples of the block and cyclic decompositions are shown in Figure 8.

The block cyclic decomposition i s a generalization of the block and cyclic decompositions

in which blocks of consecutive data objects are distributed cyclically over the processes. In the

block cyclic decomposition the mapping of the global index, rn, can be expressed as m t-+ (p, b , i) ,

where p is the process number, b is the block number in process p, and i is the index within

block b to which rn is mapped. Thus, if the number of data objects in a block is r , the block

- 20 -

‘ m 0 1 2 3 4 5 6 7 8 9
p 0 0 0 0 1 1 1 1 2 2

, 1 0 1 2 3 0 1 2 3 0 1

m 0 1 2 3 4 5 6 7 8 9 ’
- p 0 1 2 0 1 2 0 1 2 0 ’

I 2

rn

p
b
i

Figure 9: An example of the block cyclic decomposition of M = 23 data objects over P = 3
processes for a block size of r = 2. (a) shows the mapping from global index, m, to the triplet
(p , b, i), and (b) shows the inverse mapping.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
0 0 1 1 2 2 0 0 1 1 2 2 0 0 1 1 2 2 0 0 1 1 2
0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

cyclic decomposition may be written,

p
b
i

m

where T = rP. It should be noted that this reverts to the cyclic decomposition when r = 1,

with local index i = 0 for all blocks. A block decomposition is recovered when r = L , in which

case there is a single block in each process with block number b = 0. The inverse mapping of

the triplet (p , b , i) to a global index is given by,

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2
0 0 1 1 2 2 3 3 0 0 1 1 2 2 3 3 0 0 1 1 2 2 3
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 1 6 7 12 13 18 19 2 3 8 9 14 15 20 21 4 5 10 11 16 17 22

(12) (p , b , i) ++ B r + i = p r + bT+ i

where B = p + bP is the global block number. The block cyclic decomposition is one of the

data distributions supported by High Performance Fortran (HPF) [42] , and has been previously

used, in one form or another, by several researchers (see [1,4,5,9,23,27,50,52,54] for examples of

its use). The block cyclic decomposition is illustrated with an example in Figure 9.

The form of the block cyclic decomposition given by Eq. 11 ensures that the block with

global index 0 is placed in process 0, the next block is placed in process 1, and so on. However,

it is sometimes necessary to offset the proccmes relative to the global block index so that, in

general, the first block is placed in process pol the next in process po + 1, and so on. We,

therefore, generalize the block cyclic decomposition by replacing m on the righthand side of

- 21 -

Eq. 11 by rn’ = m + rpo to give,

= ((Lrn m:d “J + P O) mod P, 1-J , m mod r) .

Equation 12 may also be generalized to,

where now the global block number is given by B = (p - PO) + bP. It should be noted that in

processes with p < po, block 0 is not within the range of the block cyclic mapping and it is,

therefore, an error to reference it in any way.

In decomposing an M x N matrix we apply independent block cyclic decompositions in the

row and column directions. Thus, suppose the matrix rows are distributed with block size r

and offset po over P processes by the block cyclic mapping p r , p o , p , and the matrix columns are

distributed with block size s and offset qo over Q processes by the block cyclic mapping v ~ , ~ ~ , Q .

Then the matrix element indexed globally by (m, n) is mapped as follows,

The decomposition of the matrix can be regarded as the tensor product of the row and column

decompositions, and we can write,

The block cyclic matrix decomposition given by Eqs. 15 and 16 distributes blocks of size r x s

to a mesh of P x Q processes. We shall refer to this mesh as the process template, and refer

to processes by their position in the template. Equation 16 says that global index (m,n) is

mapped to process (p , q) , where it is stored in the block at location (b , d) in a two-dimensional

array of blocks. Within this block it is stored at location (i, j). The decomposition is completely

specified by the parameters r , s, PO, 40, P , and &. In Figure 10 an example is given of the

block cyclic decomposition of a 36 x 80 matrix for block size 4 x 5, a process template 3 x 4,

and a template offset (p o , q ~) = (0,O). Figure 11 shows the same example but for a template

offset of (1,2).

The block cyclic decomposition can reproduce most of the data distributions commonly used

in linear algebra computations on parallel computers. For example, if Q = 1 and r = [M/P1

the block row decomposition is obtained. Similarly, P = 1 and s = [N / Q l gives a block column

- 2 2 -

decomposition. These decompositions, together with row and column cyclic decompositions.

are shown in Figure 12. Other commonly used block cyclic matrix decompositions are shown

in Figure 13.

6. Parallel Implementation

In this section we describe the parallel implementation of LU factorization, with partial pivoting

over rows, for a block-partitioned matrix. The matrix, A , to be factored is assumed to have

a block cyclic decomposition. and at the end of the computation is overwritten by the lower

and upper triangular factors, L and U . This implicitly determines the decomposition of L and

U. Quite a high-level description is given here since the details of the parallel implementation

involve optimization issues that will be addressed in Section 7.

The sequential LU factorization algorithm described in Section 4.2 uses square blocks. Al-

though in the parallel algorithm we could choose to decompose the matrix using nonsquare

blocks, this would result in a more complicated code, and additional sources of concurrent

overhead. For LU factorization we, therefore, restrict the decomposition to use only square

blocks, so that the blocks used to decompose the matrix are the same as those used to partition

the computation. If the block size is r x r , then an M x N matrix consists of Mb x Nb blocks,

where Ma = [M / r] and Na = [N / r l .

As discussed in Section 4.2, LU factorization proceeds in a series of sequential steps indexed

by k = 0, min (Mb, Nb) - 1 , in each of which the following three tasks are performed,

1. factor the kth column of blocks, performing pivoting if necessary. This evaluates the

matrices L O , L1, and UO in Figure 6.

2. evaluate the kth block tow of U by solving the lower triangular system LoUl = C

3. do a rank-r update on the trailing submatrix E , replacing it with E' = E - L1U1.

We now consider the parallel implementation of each of these tasks. The computation in

the factorization step involves a single column of blocks, and these lie in a single column of

the process template. In the kth factorization step, each of the r columns in block column

k is processed in turn. Consider the ith column in block column k. The pivot is selected by

finding the element with largest absolute value in this column between row kr + i and the last

row, inclusive. The elements involved in the pivot search at this stage are shown shaded in

Figure 14. Having selected the pivot, the value of the pivot and i t s row are broadcast to all

other processors. Next, pivoting is performed by exchanging the entire row kr + i with the row

containing the pivot. We exchange entire rows, rather than just the part to the right of the

columns already factored, in order to simplify the application of the pivots to the righthand side

in any subsequent solve phase. Finally, each value in the column below the pivot is divided by

- 23 -

(a) Assignment of global block indices, (B, D), to processes, (p, q) .

B.DI 1 2 R q

(b) Global blocks, (B , D), in each process, (P , n).

Figure 10: Block cyclic decomposition of a 36 x 80 matrix with a block size of 4 x 5, onto a
3 x 4 process template. Each small rectangle represents one matrix block - individual matrix
elements are not shown. In {a), shading is used to emphasize the process template that is
periodically stamped over the matrix, and each block is labeled with the process to which it
is assigned. In {b), each shaded region shows the blocks in one process, and is labeled with
the corresponding global block indices. In both figures, the black rectangles indicate the blocks
assigned to process (0,O).

- 24 -

(b) Global blocks, (B , D), in each process, (p , q) .

Figure 11: The same matrix decomposition as shown in Figure 10, but for a template offset of
(p 0 , 4 0) = (1,2). Dashed entries in (b) indicate that the block does not contain any data. In
both figures, the black rectangles indicate the blocks assigned to process (0,O).

- 25 -

l,o l ,o
l ,o 1.0

l,o l,o
2,o 2,o
2.0 2,o

~ 2,o 2,o

(a) r = 3, 6 = 10, P = 4, Q = 1

(c) r = 10, s = 3, P = 1, Q = 4

1.01 1 ,0~1,0~1,0~1,0~1 ,o

(b) r = 1, s = 10, P = 4, Q = 1

Figure 12: These 4 figures show different ways of decomposing a 10 x 10 matrix. Each cell
represents a matrix element, and is labeled by the position, (p , q) , in the template of the
process to which it is assigned. To emphasize the pattern of decomposition, the matrix entries
assigned to the process in the first row and column of the template are shown shaded, and each
separate shaded region represents a matrix block. Figures (a) and (b) show block and cyclic
row-oriented decompositions, respectively, for 4 nodes. In figures (c) and (d) the corresponding
column-oriented decompositions are shown. Below each figure we give the values of r , s, P ,
and Q corresponding to the decomposition. In all cases po = QO = 0.

- 26 -

(a) r = 3, s = 3, P = 4, Q = 4

1,2 1,3 1,0 1,l

2,2 2,3 2,O 2,l

1,2 1,3 1,0 1,l

2,2 2,3 2,O 2,l

3,2 3,3 3,O 3,l

1,2 1.3 1,0 1 , l

2,2 2,3 2,O 2,l

(d) r = 1, s = 1, P = 4 , Q = 4

Figure 13: These 4 figures show different ways of decomposing a 10 x 10 matrix over 16
processes arranged as a 4 x 4 template. Below each figure we give the values of r , s, P , and Q
corresponding to the decomposition. In all cases po = qo = 0.

- 27 -

row
kr+i

pivot
row

column
kr+i

Figure 14: This figure shows pivoting for step i of the kth stage of LU factorization. The
element with largest absolute value in the gray shaded part of column kr + i is found, and the
row containing it is exchanged with row k r + i . If the rows exchanged lie in different processes,
communication may be necessary.

the pivot. If a cyclic column decomposition is used, Like that shown in Figure 12(d), only one

processor is involved in the factorization of the block column, and no communication is necessary

between the processes. However, in general P processes are involved, and communication is

necessary in selecting the pivot, and exchanging the pivot rows.

The solution of the lower triangular system LoUl = C to evaluate the kth block row of

U involves a single row of blocks, and these lie in a single row of the process template. If a

cyclic row decomposition is used, like that shown in Figure 12(b), only one processor is involved

in the triangular solve, and no communication is necessary between the processes. However,

in general Q processes are involved, and communication is necessary to broadcast the lower

triangular matrix, LO, to all processes in the row. Once this has been done, each process in the

row independently performs a lower triangular solve for the blocks of C that it holds.

The communication necessary to update the trailing submatrix: at step C takes place in two

steps. First, each process holding part of L1 broadcasts these blocks to the other processes

in the same row of the template. This may be done in conjunction with the broadcast of Lo,
mentioned in the preceding paragraph, so that all of the factored panel is broadcast together.

Next, each process holding part of U1 broadcasts these blocks to the other processes in the

same column of the template. Each process can then complete the update of the blocks that it

holds with no further communication.

A pseudocode outline of the parallel LU factorization algorithm is given in Figure 15. There

- 28 -

- I

' pcol= qo
prow= po
do k= 0, niin (k f b , n i b) - 1

do i= 0 , r - 1
if (q =pcol) find pivot, value and location
broadcast pivot value and location to all processes
exchange pivot rows
if (q =pcol) divide column r below diagonal by pivot

end do

if (p =prow) then
broadcast LO to all process in same template row
solve LOU1 = C

end if

broadcast L1 to all processes in same template row
broadcast U1 to all processes in same template column
update E + E - LlUl

pcol= (pcol + 1) mod Q
Prow= (prow + 1) mod P

end do

Figure 15: Pseudocode for the basic parallel block-partitioned LU factorization algorithm. This
code is executed by each process. The first box inside the k loop factors the kth column of
blocks. The second box solves a lower triangular system to evaluate the kth row of blocks of
[J , and the third box updates the trailing submatrix. The template offset is given by (PO, q o) ,
and (p , q) is position of a process in the template.

are two points worth noting in Figure 15. First, the triangular solve and update phases operate

on matrix blocks and may, therefore, be done with parallel versions of the Level 3 BLAS

(specifically, xTRSM and xGEMM, respectively). The factorization of the column of blocks,

however, involves a loop over matrix columns. Hence, is it not a block-oriented computation,

and cannot be performed using the Level 3 BLAS. The second point to note is that most of the

parallelism in the code comes from updating the trailing submatrix since this is the only phase

in which all the processes are busy.

Figure 15 also shows quite clearly where communication is required; namely, in finding

the pivot, exchanging pivot rows, and performing various types of broadcast. The exact way

in which these communications are done and interleaved with computation generally has an

important effect on performance, and will be discussed in more detail in Section 7.

Figure 15 refers to broadcasting data to all processes in the same row or column of the

template. This is a common operatiori in parallel linear algebra algorithms, so the idea will

be described here in a little more detail. Consider, for example, the task of broadcasting the

- 29 -

(a) Broadcast along rows.

(b) Broadcast along columns.

Figure 16: Schematic representation of broadcast along rows and columns of a 4 x 6 process
template. In (a), each shaded process broadcasts to the processes in the same row of the process
template. In (b), each shaded process broadcasts to the processes in the same column of the
process template.

bwer triangular block, LO, to all processes in the same row of the template, as required before

solving Lou1 = C. If LO is in process (p,q), then it will be broadcast to all processes in row

p of the process template. As a second example, consider the broadcast of L1 to all processes

in the same template row, as required before updating the trailing submatrix. This type of

“rowcast” is shown schematically in Figure 16(a). If L1 is in column p of the template, then

each process (p , q) broadcasts its blocks of L1 to the other processes in row p of the template.

Loosely speaking, we can say that Lo and L1 are broadcast along the rows of the template.

This type of data movement is the same as that performed by the Fortran 90 routine SPREAD

[7]. The broadcast of UI to all processes in the same template column is very similar. This

type of communication is sometimes referred to as a “colcast”, and is shown in Figure 16(b).

- 30 -

7. Optimization, Tuning, and Trade-offs

In this section, we shall examine techniques for optimizing the basic LU factorization code

presented in Section 4.2. Among the issues to be considered are the assignrnent of processes

to physical processors, the arrangeme~t of the data in the local memory of each process, the

trade-off between load imbalance and communication latency, the potential for overlapping

communication and calculation, and the type of algorithm used to broadcast data. Many of

these issues are interdependent, and in addition the portability and ease of code maintenance

and use must be considered. For further details of the optimization of parallel LU factorization

algorithms for specific concurrent machines, together with timing results, the reader is referred

to the work of Chu and George [12], Geist and Heath [34], Geist and Romine [35], Van de Velde

[55], Brent [8], Hendrickson and Womble [39], Lichtenstein and Johnson [47] , and Dongarra

and ceworkers [10,251.

7.1. Mapping Logical Memory to Physical Memory

In Section 5, a logical (or virtual) matrix decomposition was described in which the global

index (m, n) is mapped to a position, (p, q) , in a logical process template, a position, (b , d) , in

a logical array of blocks local to the process, and a position, (i , j) , in a logical array of matrix

elements local to the block. Thus, the block cyclic decomposition is hierarchical, and attempts

to represent the hierarchical memory of advanced-architecture computers. Although the parallel

LU factorization algorithm can be specified solely in terms of this logical hierarchical memory,

its performance depends on how the logical memory is mapped to physical memory.

7.1.1. Assignment of Processes to Processors

Consider, first, the assignment of processes, (p , q) , to physical processors. In general, more than

one process may be assigned to a processor, so the problem may be overdecomposed. To avoid

load imbalance the same number of processes should be assigned to each processor as nearly

as possible. If this condition is satisfied, the assignment of processes to processors can still

affect performance by influencing the communication overhead. On recent distributed memory

machines, such as the Intel Delta and CM-5, the time to send a single message between two

processors is largely independent of their physical location [29,48,49], and hence the assignment

of processes to processors does not have much direct effect on performance. However, when a

collective communication task, such as a broadcast, is being done, contention for physical re-

sources can degrade performance. Thus, the way in which processes are assigned to processors

can affect performance if some assignments result in differing amounts of contention, Loga-

rithmic contention-free broadcast algorithms have been developed for processors connected as

a two-dimensional mesh [6,51], so on such machines process (p , q) i s usually mapped to the

- 31 -

processor at position (p , q) in the mesh of processors. Such an assignment also ensures that the

multiple one-dimensional broadcasts of L1 and U1 along the rows and columns of the template,

respectively, do not give rise to contention.

7.1.2. Layout of Local Process Memory

The layout of matrix blocks in the local memory of a process, and the arrangement of matrix

elements within each block, can also affect performance. Here, tradeoffs among several fac-

tors need to be taken into account. When communicating matrix blocks, for example in the

broadcasts of L1 and U1, we would like the data in each block to be contiguous in physical

memory so there is no need to pack them into a communication buffer before sending them. On

the other hand, when updating the trailing submatrix, E , each process multiplies a column of

blocks by a row of blocks, to do a rank-r update on the part of E that it contains. If this were

done as a series of separate block-block matrix multiplications, as shown in Figure 18(a), the

performance would be poor except for sufficiently large block sizes, r , since the vector and/or

pipeline units on most processors would not be fully utilized, as may be seen in Figure 17 for

the i860 processor. Instead, we arrange the loops of the computation as shown in Figure 18(b).

Now, if the data are laid out in physical memory f i s t by running over the i index and then

over the d index the inner two Ioops can be merged, so that the length oE the inner loop is

now rdmax. This generally results in much better vector/pipeline performance. The b and j

loops in Figure 18(b) can also be merged, giving the algorithm shown in Figure 18(c). This is

just the outer product form of the multiplication of an rd,, x r by an r x rbmax matrix, and

would usually be done by a call to the Level 3 BLAS routine xGEMM of which an assembly

coded sequential version is available on most machines. Note that in Figure 18(c) the order

of the inner two loops is appropriate for a Fortran implementation - for the G language this

order should be reversed, and the data should be stored in each process by rows instead of by

columns.

We have found in our work on the Intel iPSG/SSO hypercube and the Delta system that

it is better to optimize for the sequential matrix multiplication with an (i, d , j , b) ordering of

memory in each process, rather than adopting an (i, j, d , b) ordering to avoid buffer copies when

communicating blocks. However, there is another reason for doing this. On most distributed

memory computers the message startup cost is sufficiently large that it is preferable wherever

possible to send data as one large message rather than as several smaller messages. Thus,

when communicating L1 and VI the blocks to be broadcast would be amalgamated into a

single message, which requires a buffer copy. The emerging Message Passing interface (MPI)

standard [21] provides support for noncontiguous messages, so in the future the need to avoid

buffer copies will not be of such concern to the application developer.

- 32 -

40.

35

30

25
E s 2o

15

10

5

0
0 100 200 300 400 500

Matrix Size, M
Figure 17: Performance of the assembly-coded Level 3 BLAS matrix multiplication routine
DGEMM on one i860 processor of the Intel Delta system. Results for square and rectangular
matrices are shown. Note that the peak performance of about 35 Mflops is attained only for
matrices whose smallest dimension exceeds 100. Thus, performance is improved if a few large
matrices are multiplied by each process, rather than many small ones.

7.2. Tradeoffs between Load Balance and Communication Latency

We have discussed the mapping of the logical hierarchical memory to physical memory. In addi-

tion, we have pointed out the importance of maintaining long inner loops to get good sequential

performance for each process, and the desirability of sending a few large messages rather than

many smaller ones. We next consider load balance issues. Assuming that equal numbers of

processes have been assigned to each processor, load imbalance arises in two phases of the par-

allel LU factorization algorithm; namely, in factoring each column block, which involves only

P processes, and in solving the lower triangular system to evaluate each row block of U , which

involves only Q processes. If the time for data movement is negligible, the aspect ratio of the

template that minimizes load imbalance in step t of the algorithm is,

P - Sequential time to factor column block

Q
- -

Sequential time for triangular solve

where Ma x Nb is the matrix size in blocks, and r the block size. Thus, the optimal aspect

ratio of the template should be the same as the aspect ratio of the matrix, i.e., Ma/Nb in

- 33 .

do d = Oldmax - 1
~ do i = 0 , r - 1

do j = 0, T - 1
do k = 0, r - 1

E (b , d ; i , j) = E (b , d ; i , j) - L i (b . d , i , k) U i (b , d ; k , j)
end all do loops

do k = 0, r - 1
do b = O,b,, - 1

d o j = O , r - 1
dod=O,dm,-1

do i = 0, r - 1
E(b, d; i, j) = E(b, d; i, j) - h (b , d ; i, k) Ui(b, d; E , j)

end all do loops

(b) Intermediate form of algorithm

(c) Outer product form of algorithm

Figure 18: Pseudocode for different versions of the rank-r update, E +- E - LIU1, for one
process. The number of row and column blocks per process is given by b,, and d,,, respec-
tively; r is the block size. Blocks axe indexed by (b , d) , and elements within a block by (i, j) .
In version (a) the r x r blocks are multiplied one at a time, giving an inner loop of length r .
(b) shows the loops rearranged before merging the i and d loops, and the j and b loops. This
ieads to the outer product form of the algoritbm shown in (c) in which the inner loop is now
of length rdma.

blocks, or M / N in elements. If the effect of communication time is included then we must

take into account the relative times taken to locate and broadcast the pivot information, and

the time to broadcast the lower triangular matrix, Lo, along a row of the template. For

both tasks the communication time increases with the number of processes involved, and since

the communication time associated with the pi. oting is greater than that associated with the

triangular solve, we would expect the optimum aspect ratio of the template to be less than M / N .

In fact, for our runs on the Intel Delta system we found an aspect ratio, P/&, of between 1/4

and 1/8 to be optimal for most problems with square matrices, and that performance depends

rather weakly on the aspect ratio, particularly for fasge grain sizes. Some typical results are

shown in Figure 19 for 256 processors, which show a variation of less than 20% in performance

- 34 -

6 I I I I I

- - - - 4x64
- 8x32

5 - ,......... 12 x 21
- - -16 x 16

4 -

-tz

u
g3-

2 -

1 -

0 I I I I I

0 3000 m 9Ooo 12000 15000 18000
Matrix Size, M

Figure 19: Performance of LU factorization on the Intel Delta as a function of square ma-
trix size for different processor templates containing approximately 256 processors. The best
performance is for an aspect ratio of 1/4, though the dependence on aspect ratio is rather weak.

as P/Q varies between 1/16 and 1 for the largest problem.

The block size, T , also affects load balance. Here the tradeoff is between the load imbalance

that arises as rows and columns of the matrix are eliminated as the algorithm progresses, and

communication startup costs. The block cyclic decomposition seeks to maintain good load

balance by cyclically assigning blocks to processes, and the load balance is best if the blocks

are small. On the other hand, cumulative communication startup costs are less if the block size

is large since, in this case, fewer messages must be sent (although the total volume of data sent

is independent of the block size). Thus, there is a block size that optimally balances the load

imbalance and communication startup costs.

7.3. Optimality and Pipelining Tradeoffs

The communication algorithms used also influence performance. In the LU factorization al-

gorithm, all the communication can be done by moving data along rows and/or columns of

the process template. This type of communication can be done by passing from one process

to the next along the row or column. We shall call this a “ring” algorithm, although the ring

- 35 -

may, or may not, be closed. An alternative is to use a spanning tree algorithm, of which there

are several varieties. The complexity of the ring algorithm is linear in the number of pro-

cesses involved, whereas that of spanning tree algorithms is logarithnllc (for example, see (61).

Thus, considered in isolation, the spanning tree algorithms are preferable to a ring algorithm.

However, in a spanning tree algorithm, a process may take part in several of the logarithmic

steps, and in some implementations these algorithms act as a barrier. In a ring algorithm, each

process needs to communicate only once, and can then continue to compute, in effect over-

lapping the communication with computation. An algorithm that interleaves communication

and calculation in this way is often referred to as a pipelined algorithm. In a pipelined LU

factorization algorithm with no pivoting, communication and calculation would flow in waves

across the matrix. Pivoting tends to inhibit this advantage of pipelining.

In the pseudocode in Figure 15, we do not specify how the pivot information should be

broadcast. In an optimized implementation, we need to finish with the pivot phase, and the

triangular solve phase, as soon as possible in order to begin the update phase which is richest in

parallelism. Thus, i t is not a good idea to broadcast the pivot information from a single source

process using a spanning tree algorithm, since this may occupy some of the processes involved

in the panel factorization for too long. It is important to get the pivot information to the other

processes in this template column as soon as possible, so the pivot information is first sent to

these processes which subsequently broadcast it along the template rows to the other processes

not involved in the panel factorization. In addition, the exchange of the parts of the pivot rows

lying within the panel is done separately from that of the parts outside the pivot panel. Another

factor to consider here is when the pivot information should be broadcast along the template

columns. In Figure 15, the information is broadcast, and rows exchanged, immediately after

the pivot is found. An alternative is to store up the sequence of r pivots for a panel and to

broadcast them along the template rows when panel factorization is complete. This defers the

exchange of pivot rows for the parts outside the panel until the panel factorization has been

done, as shown in the pseudocode fragment in Figure 20. An advantage of this second approach

is that only one message is used to send the pivot information for the panel along the template

rows, instead of r messages.

In our implementation of LU factorization on the Intel Delta system, we used a spanning

tree algorithm to locate the pivot and to broadcast it within the column of the process template

performing the panel factorization. This ensures that pivoting, which involves only P processes,

is completed as quickly as possible. A ring broadcast is used to pipeline the pivot information

and the factored panel along the template rows. Finally, after the triangular solve phase has

completed, a spanning tree broadcast is used to send the newly-formed block row of U along the

template columns. Results for square matrices from runs on the Intel Delta system are shown

- 36 -

if (q =pcol) then
d o i = O , r - 1

find pivot value and location
exchange pivot rows lying within panel
divide column r below diagonal by pivot

end do
end if
broadcast pivot information for r pivots along template rows
exchange pivot rows lying outside the panel for each of r pivots

Figure 20: Pseudocode fragment for partial pivoting over rows. This may be regarded as
replacing the first box inside the k loop in Figure 15. In the above code pivot information is
first disseminated within the template column doing the panel factorization. The pivoting of
the parts of the rows lying outside the panel is deferred until the panel factorization has been
completed.

in Figure 21. For each curve the results for the best process template configuration are shown.

Recalling that for a scalable algorithm the performance should depend linearly on the number

of processors for fixed granularity (see Eq. 2), it is apparent that scalability may be assessed

by the extent to which isogranularity curves differ from linearity. An isogranularity curve is a

plot of performance against number of processors for a fixed granularity. The results in Figure

21 can be used to generate the isogranularity curves shown in Figure 22 which show that on

the Delta system the LU factorization routine starts to lose scalability when the granularity

falls below about 0.2 x lo6. This correspoiids to a matrix size of about A4 = 10000 on 512

processors, or about 13% of the memory available to applications on the Delta, indicating that

LU factorization scales rather well on the Intel Delta system.

8. Conclusions and Future Research Directions

Portability of programs has always been an important consideration. Portability was easy to

achieve when there was a single architectural paradigm (the serial von Neumann machine) and

a single programming language for scientific programming (Fortran) embodying that common

model of computation. Architectural and linguistic diversity have made portability much more

difficult, but no less important, to attain. Users simply do not wish to invest significant amounts

of time to create large-scale application codes for each new machine. Our answer is to develop

portable software libraries that hide machine-specific details.

8.1. Portability, Scalability, and Standards

In order t o be truly portable, parallel software libraries must be standardized. In a paral-

lel computing environment in which the higher-level routines and/or abstractions are built

- 3 7 -

12

10 -

8 -

% - a 6
0

4 -

2 -

0-

12 ! I 1 I I I I

I I I I I
1.221

0.500 -

-
0.195

I

0.096
-

-

I I I I I

10 -

8 -

z6-
3
c3

4 -

2 -

1 I I Qooo 8Ooo 12900 ldooo I 2oooo I 24OOo I 280oo I
0

Matrix size, M

Figure 21: Performance of LU factorization on the Intel Delta as a function of square matrix size
for different numbers of processors. For each curve, results are shown for the process template
configuration that gave the best performance for that number of processors.

Figure 22: Isogranularity curves in the (N p , G) plane for the LU factorization of square matrices
on the Intel Delta system. The curves are labeled by the granularity in units of lo6 matrix
elements per processor. The linearity of the plots for granularities exceeding about 0.2 x lo6
indicates that the LU factorization algorithm scales well on the Delta.

- 38 -

upon lower-level computation and message-passing routines, the benefits of standardization

are particularly apparent. Furthermore. the definition of computational and message-passing

standards provides vendors with a clearly defined base set of routines that they can implement

efficiently.

From the user’s point of view, portability means that, a s new machines are developed. they

are simply added to the network, supplying cycles where they are most appropriate.

From the mathematical software developer’s point of view, portability may require signif-

icant effort, Economy in development and maintenance of mathematical software demands

that such development effort be leveraged over as many different computer systems as possible.

Given the great diversity of parallel architectures, this type of portability is attainable to only

a limited degree, but machine dependences can at least be isolated.

LAPACK is an example of a mathematical software package whose highest-level components

are portable, while machine dependences are hidden in lower-level modules. Such a hierarchical

approach is probably the closest one can come to software portability across diverse parallel

architectures. And the BLAS that are used so heavily in LAPACK provide a portable, efficient,

and flexible standard for applications programmers.

Like portability, scalability demands that a program be reasonably effective over a wide

range of number of processors. The scalability of parallel algorithms, and software libraries

based on them, over a wide range of architectural designs and numbers of processors will likely

require that the fundamental granularity of computation be adjustable to suit the particular

circumstances in which the software may happen to execute. Our approach to this problem

is block algorithms with adjustable block size. In many cases, however, polyalgorithmsl may

be required to deal with the full range of architectures and processor multiplicity likely to be

available in the future.

Scalable parallel architectures of the future are likely to be based on a distributed memory

architectural paradigm. In the longer term, progress in hardware development, operating sys-

tems, languages, compilers, and communications may make it possible for users to view such

distributed architectures (without significant loss of efficiency) as having a shared memory with

a global address space. For the near term, however, the distributed nature of the underlying

hardware will continue to be visible at the programming level; therefore, efficient procedures

for explicit communication will continue to be necessary. Given this fact, standards for basic

message passing (send/receive), as well as higher-level communication constructs (global sum-

mation, broadcast, etc.), become essential to the development of scalable libraries that have

any degree of portability. In addition to standardizing general communication primitives, it

lIn a polyalgorithm the actual algorithm used depends on the computing environment and the input data.
The optimal algorithm in a particular instance is automatically selected at runtime.

- 39 -

may also be advantageous to establish standards for problem-specific constructs in corrimonly

occurring areas such as linear algebra.

The BLACS (Basic Linear Algebra Communication Subprograms) [16,26] is a package that

provides the same ease of use and portability for MIMD message-passing linear algebra com-

munication that the BLAS [17,18.45] provide for linear algebra computation. Therefore, we

recommend that future software for dense linear algebra on MIMD platforms consist of calls to

the BLAS for computation and calls to the BLACS for communication. Since both packages

will have been optimized for a particular platform, good performance should be achieved with

relatively little effort. Also, since both packages will be available on a wide variety of machines,

code modifications required to change platforms should be minimal.

8.2. Alternative Approaches

Traditionally, large, general-purpose mathematical software libraries have required users to

write their own programs that call library routines to solve specific subproblems that arise

during a computation. Adapted to a shared-memory parallel environment, this conventional

interface still offers some potential for hiding underlying complexity. For example, the LAPACK

project incorporates parallelism in the Level 3 BLAS, where it is not directly visible to the user.

But when going from shared-memory systems to the more readily scalable distributed mem-

ory systems, the complexity of the distributed data structures required is more difficult to hide

from the user. Not only must the problem decomposition and data layout be specified, but

different phases of the user’s problem may require transformations between different distributed

data structures.

These deficiencies in the conventional user interface have prompted extensive discussion of

alternative approaches for scalable parallel software libraries of the future. Possibilities include:

1. Traditional function library (i.e., minimum possible change to the status quo in going

from serial to parallel environment). This will allow one to protect the programming

investment that has been made.

2. Reactive servers on the network. A user would be able to send a computational prob-

lem to a server that was specialized in dealing with the problem. This fits well with

the concepts of a networked, heterogeneous computing environment with various special-

ized hardware resources (or even the heterogeneous partitioning of a single homogeneous

parallel machine).

3. General interactive environments like Matlab or Mathematica, perhaps with “expert”

drivers (ie., knowledgebased systems). With the growing popularity of the many inte-

grated packages based on this idea, this approach would provide an interactive, graphical

- 40 -

interface for specifying and solving scientific problems. Both the algorithms and data

structures are hidden from the user, because the package itself is responsible for storing

and retrieving the problem data in an efficient, distributed manner. In a heterogeneous

networked environment, such interfaces could provide seamless access to computational

engines that would be invoked selectively for different parts of the user‘s computation

according to which machine is most appropriate for a particular subproblem.

4. Domain-specific problem solving environments, such as those for structural analysis. En-

vironments like Matlab and Mathematica have proven to be especially attractive for rapid

prototyping of new algorithms and systems that may subsequently be implemented in a

more customized manner for higher performance.

5. Reusable templates (i.e., users adapt “source code” to their particular applications). A

template is a description of a general algorithm rather than the executable object code or

the source code more commonly found in a conventional software library. Nevertheless,

although templates are general descriptions of key data structures, they offer whatever

degree of customization the user may desire.

Novel user interfaces that hide the complexity of scalable parallelism will require new con-

cepts and mechanisms for representing scientific computational problems and for specifying how

those problems relate to each other. Very high level languages and systems, perhaps graphi-

cally based, not only would facilitate the use of mathematical software from the user’s point

of view, but also would help to automate the determination of effective partitioning, mapping,

granularity, data structures, etc. However, new concepts in problem specification and represen-

tation may also require new mathematical research on the analytic, algebraic, and topological

properties of problems (e.g., existence and uniqueness).

We have already begun work on developing such templates for sparse matrix computations.

Future work will focus on extending the use of templates to dense matrix computations.

We hope the insight we gained from our work will influence future developers of hardware,

compilers and systems software so that they provide tools to facilitate development of high

quality portable numerical software.

The EISPACK, LINPACK, and LAPACK linear algebra libraries are in the public domain,

and are available from netlib. For example, for more information on how to obtain LAPACK,

send the following one-line email message to netlibQorn1. gov:

send index from lapack

Information for EISPACK and LINPACK can be similarly obtained. We expect to make a

preliminary version of the ScaLAPACK library available from netlib in 1993.

- 41 -

Acknowledgments

This research was performed in part using the Intel Touchstone Delta System operated by the

California Institute of Technology on behalf of the Concurrent Superconiputing Consortium.

Access to this facility was provided through the Center for Research on Parallel Computing.

9. References

[l] E. Anderson, A. Benzoni, J. J . Dongarra, S. Moulton, S. Ostrouchov, B. Tourancheau,

and R. van de Geijn. LAPACK for distributed memory architectures: Progress report. In

Parallel Processing for Scientific Computmg, Fifth SIAM Conference. SIAM, 1991.

[2] E. Anderson and J. Dongarra. Results from the initial release of LAPACK. Technical Re-

port LAPACK working note 16, Computer Science Department, University of Tennessee,

Knoxville, T N , 1989.

[3] E. Anderson and J. Dongarra. Evaluating block algorithm variants in LAPACK. Tech-

nical Report LAPACK working note 19, Computer Science Department, University of

Tennessee, Knoxville, TN, 1990.

[4] C. C. Ashcraft. The distributed solution of linear systems using the torus wrap data

mapping. Engineering Computing and Analysis Technical Report ECA-TR-147, Boeing

Computer Services, 1990.

[5] C. C. Ashcraft. A taxonamy of distributed dense LU factorization methods. Engineering

Computing and Analysis Technical Report ECA-TR-161, Boeing Computer Services, 1991.

[SI M. Bamett, D. G. Payne, and R. van de Geijn. Broadcasting on meshes with worm-hole

routing. Technical report, Department of Computer Science, University of Texas a t Austin,

April 1993. Submitted to Supercomputing '93.

[7] W. S. Brainerd, C . H. Goldbergs, and J. C. Adams. Programmers Guide to Fortran 90.

McGraw-Hill, New Yotk, 1990.

[8] R. P. Brent. The LINPACK benchmark for the Fujitsu AP 1000. In Proceedings of the

Fourth Symposium on ilhe Frontiers of Massively Parallel Computation, pages 128-135.

IEEE Computer Society Press, 1992.

191 R. P. Brent. The LINPACK benchmark on the AP 1000: Preliminary report. In Proceed-

ings o f the 2nd CAP Workshop, NOV 1991.

- 42 -

[lo] J . Choi. J . J . Dongarra, R. Pozo. and D L$-. W'alker. Scalapack: A scalable linear algebra

library for distributed memory concurrent computers. In Proceedzngs of the Fourth Sympo-

sium on the Frontters of Massively Parallel Computation, pages 120-127. IEEE Computer

Society Press, 1992.

[ll] J . Choi. J . J . Dongarra, and D. M', Ml'alker The design of scalable softnTare libraries for

distributed memory concurrent computers. In J . J . Dorigarra and B. Tourancheau, editors,

Environments and Tools for Parallel Scientific Computing. Elsevier Science Publishers,

1993.

[12] E. Chu and A. George. Gaussian elimination with partial pivoting and load balancing on

a multiprocessor. Parallel Computing, 5:65-74, 1987.

[13] D. E. Culler, A. Dusseau, S. C. Goldstein, A. Krishnamurthy, S. Lumetta, T. von Eicken,

and K . Yelick. Introduction to Split-C: Version 0.9. Technical report, Computer Science

Division - EECS, University of California, Berkeley, CA 94720, February 1993.

[14] J. Demmel. LAPACK: A portable linear algebra library for supercomputers. In Proceedings

of the 1989 IEEE Control Systems Socieiy Workshop on Computer-Aided Control System

Design, December 1989.

[15] J. J. Dongarra. Increasing the performance of mathematical software through high-level

modularity. In Proc. Sixth Int. Symp. Comp. Methods in Eng. & Applied Sciences, Ver-

sailles, France, pages 239-248. North-Holland, 1984.

[16] J . J . Dongarra. LAPACK Working Note 34: Workshop on the BLACS. Computer Science

Dept. Technical Report CS91-134, University of Tennessee, Knoxville, T N , May 1991.

(LAPACK Working Note #34).

[17] J. J . Dongarra, J. Du Croz, S. Hammarling, and I. Duff. A set of level 3 basic linear

algebra subprograms. ACM Trnnsacttons on Mathematical Soflware, 16(1):l-17, 1990.

[18] J . J . Dongarra, J . Du Croz, S. Hammatling, and R. Hanson. An extended set of Fortran

basic linear algebra subroutines. ACM Transactions on Mathematical Software, 14(1):l-

17, March 1988.

[19] J . J . Dongarra, I. S. Duff, D. C. Sorensen, and H . A. Van der Vorst. Solving Linear Systems

on Vector and Shared Memory Computers. SIAM Publications, Philadelphia, PA, 1991.

[20] J . J . Dongarra and E. Grosse. Distribution of mathematical software via electronic mail.

Communications of the ACM, 30(5):403-407, July 1987.

- 43 -

[21] J . J. Dongarra, R. Hempel, A. J . G . Hey, and D. 15.. Walker. A proposal for a user-

level message passing interface in a distributed memory environment. Technical Report

TM-12231 , Oak Ridge National Laboratory, February 1993.

[22] J . J . Dongarra, Peter Mayes, and Giuseppe Radicati di Brozolo. The IBM RISC Sys-

tem/6000 and linear algebra operations. Supercomputer, 44(VIII-4):15-30, 1991.

[23] J . J . Dongarra and S. Ostrouchov. LAPACK block factorization algorithms on the Intel

iPSC/860. Technical Report CS-90-115, University of Tennessee at Knoxville, Computer

Science Department, October 1990.

[24) J . J. Dongarra, R. Pozo, and D. W. Walker. An object oriented design for high performance

linear algebra on distributed memory architectures. In Proceedtngs of ihe Object Onenled

Numerics Conference, 1993.

1251 J. J . Dongarra, R. van de Geijn, and D. W. Walker. A look at scalable dense linear alge-

bra libraries. In IEEE, editor, Proceedtngs of the Scalable Bigh-Performance Computing

Conference, pages 372-379. IEEE Publishers, 1992.

[26] J . J . Dongarra and R. A. van de Geijn. Two-dimensional basic linear algebra commu-

nication subprograms. Technical Report LAPACK working note 37, Computer Science

Department, University of Tennessee, Knoxville, TN, October 1991.

[27] J . J . Dongarra and R. A. van de Geijn. Reduction to condensed form for the eigenvalue

problem on distributed memory architectures. Parallel Computing, 18:973-982, 1992.

[28] J . Du Croz and M. Pont. The development of a floating-point validation package. In

M. J. Irwin and R. Stefanelli, editors, Proceedings of the 8th Symposium on Computer

Arithmetic, Como, Italy, May 19-21, 1987. IEEE Computer Society Press, 1987.

[29] T. H. Dunigan. Communication performance of the Intel Touchstone Delta mesh. Teeh-

nical Report TM-11983, Oak Ridge National Laboratory, January 1992.

[30] A. Edelman. Large dense numerical linear algebra ixi 1993: The parallel computing influ-

ence. International Journal Supercomputer Applications, 1993. Accepted for publication.

[31] E. W. Felten and S. W. Otto. Coherent parallel C. In G. C. Fox, editor, Proceedrngs of the

Third Conference on Hypercube Concurrent Compzlters and Applications, pages 440-450.

ACM Press, 1988.

[32] G. C . Fox, M. A. Johnson, G. A. Lyzenga, S. W. Otto, J . K. Salmon, and D. W. Walker.

Solving Problems on Concurrent Processors, volume 1. Prentice Hall, Englewood Cliffs,

N.J., 1988.

- 44 -

[33] E;. Gallivan, R. Plemmons, and A. Sanieh. Parallel algorithms for dense linear algebra

computations. S1.4M Review, 32(1):54-135. 1990.

1341 A. Geist and M. Heath. Matrix factorization on a hypercube multiprocessor. In M . Heath,

editor, Hypercube Multzprocessors. 1986, pages 161 -180, Philadelphia, PA, 1986. Society

for Industrial and Applied Mathematics.

[35] A. Geist and C. Romine. LU factorization algorithms on distributed-memory multiproces-

sor architectures. SIAM J. Sci. Statist. Compui., 9(4):639-649, July 1988.

[36] G. H. Golub and C. F. Van Loan. Mairiz Computaiions. The Johns Hopkins Press,

Baltimore, Maryland, 2nd edition, 1989.

[37] A. Gupta and V. Kumar. On the scalability of FFT on parallel computers. In Proceedings

of the Frontiers 90 Conference on Massively Parallel Computation. IEEE Computer Society

Press, 1990. Also available as technical report TR 90-20 from the Computer Science

Department, University of Minnesota, Minneapolis, MN 55455.

[38] R. Harrington. Origin and development of the method of moments for field computation.

IEEE Antennas and Propagation Magazine, June 1990.

[39] B. Hendrickson and D. Womble. The toruswrap mapping for dense matrix computa-

tions on massively parallel computers. Technical Report SAND92-0792, Sandia National

Laboratories, April 1992.

[40] J. L. Hess. Panel methods in computational fluid dynamics. Annual Reviews of Fluid

Mechanics, 22~255-274, 1990.

[41] J . L. Hess and M. 0. Smith. Calculation of potential flows about arbitrary bodies. In

D. Kiichemann, editor, Progress in Aeronautical Sciences, Volzlme 8. Pergamon Press,

1967.

[42] High Performance Fortran Forum. High Performance Fortrun Language Specification, Ver-

sion 1.0, January 1993.

[43] R. W. Hockney and C . R. Jesshope. Parallel Computers. Adam Hilger Ltd., Bristol, UK,

1981.

[44] W. Kahan. Paranoia. Available from netlib [20].

[45] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. Basic linear algebra subprograms for

Fortran usage. A C M Trans. Math. Softw., 5:308-323, 1979.

- 45 -

[46] C. Leiserson. Fat trees: Universal networks for hardware-efficient supercomputing. IEEE

Transactzons on Computers. C-34(10):892-Y01, 1985.

[47] W. Lichtenstein and S. L. Johnson. Block-cyclic dense linear algebra. Technical Report

TR-04-92, Harvard University, Center for Research in Computing Technology, January

1992.

[48] M. Lin, D. Du, A. E. Klietz, and S. Saroff. Performance evaluation of the CM-5 inter-

connection network. Technical report, Department of Computer Science, university of

Minnesota, 1992.

[49] R. Ponnusamy, A. Choudhary, and G. Fox. Communication overhead on CM-5: An exper-

imental performance evaluation. In Proceedangs of the Fourth Symposium on the Frontiers

of Massively Parallel Computation, pages 108-115. IEEE Computer Society Press, 1992.

[50] Y. Saad and M. H. Schultz. Parallel direct methods for solving banded linear systems.

Technical Report YALEU/DCS/RR-387, Department of Computer Science, Yale Univer-

sity, 1985.

[51] S. R. Seidel. Broadcasting on linear arrays and meshes. Technical Report TM-12356, Oak

Ridge National Laboratory, April 1993.

[52] A. Skjellum and A. Leung. LU factorization of sparse, unsymmetric, Jacobian matrices

on multicomputers. In D. W. Walker and Q. F. Stout, editors, Proceedings of the Fifth

Distributed Memory Concurrent Computing Conference, pages 328-337. IEEE Press, 1990.

[53] Thinking Machines Corporation, Cambridge, MA. CM-5 Technical Summary, 1991.

[54] R. A. van de Geijn. Massively parallel LINPACK benchmark on the Intel Touchstone

Delta and iPSC/SSO systems. Computer Science report TR-91-28, Univ. of Texas, 1991.

[55] E. F. Van de Velde. Data redistribution and concurrency. Parallel Computrng, 16, Decem-

ber 1990.

1561 J . J . H. W a g . Generalized Moment Methods in Electromagnetics. John Wiley & Sons,

New York, 1991.

[57] J . Wilkinson and C . Reinsch. Handbook for Automatic Cornputation; Volume I1 - Linear

Algebra. Springer-Verlag, New York, 1971.

- 47 -

ORNL/TM- 12404

INTERNAL DISTRIBUTION

1. B. R. Appleton
2. J . Choi

5. E. F. D’Azevedo
3-4. T. S. Darland

6-10. 3 . J. Dongarra
11. J. B. Drake
12. G. A. Geist
13. L. J . Gray
14. M. R. Leuse
15. E. G. Ng
16. C. E. Oliver
17. B. W. Peyton

18-22. S. A. Raby

23. C. H. Romine
24. T. H. Rowan

25-29. R. F. Sincovec
30-34. D. W. Walker
35-39. R. C. Ward

40. P. H. Worley
41. Central Research Library
42. ORNL Patent Office
43. K-25 Applied Technology Li-

44. Y-12 Technical Library
45. Laboratory Records - RC

brary

46-47. Laboratory Records Department

EXTERNAL DISTRIBUTION

48. Cleve Ashcraft, Boeing Computer Services, P.O. Box 24346, M/S 7L-22, Seattle,
WA 981240346

49. Donald M. Austin, 6196 EECS Bldg., University of Minnesota, 200 Union Street,
S.E., Minneapolis, MN 55455

50. Robert G. Babb, Oregon Graduate Institute, CSE Department, 19600 N.W. von
Neumann Drive, Beaverton, OR 97006-1999

51. Lawrence J . Baker, Exxon Production Research Company, P.O. Box 2189, Hous-
ton, TX 77252-2189

52. Jesse L. Barlow, Department of Computer Science, Pennsylvania State University,
University Park, PA 16802

53. Edward H. Barsis, Computer Science and Mathematics, P. 0. Box 5800, Sandia
National Laboratories, Albuquerque, NM 87185

54. Michael L. Barton, Intel Corporation, 15201 N. W. Greenbrier Parkway, Beaver-
ton, OR 97006

55. Colin Bennett, Department of Mathematics, University of South Carolina, Columbia,
SC 29208

56. Dominique Bennett, CERFACS, 42 Avenue Gustave Coriolis, 31057 Toulouse
Cedex, FRANCE

57. Marsha J. Berger, Courant Institute of Mathematical Sciences, 251 Mercer Street,
New York, NY 15dl2

- 48 -

58. Mike Berry. Department of Computer Science, University of Tennessee, 107 Ayres
Hall. Knoxville, TN 37996-1301

59. Chris Bischof. Mathematics and Computer Science Division, Argonne Kational
Laboratory, 9700 South Cass Avenue, Argonne, IT, 60439

60. Ake Bjorck, Department of Mathematics. Linkoping University, S-581 83 Linkop-
ing, Sweden

61-65. Jean R. S. Blair, Department of Computer Science, Ayres Hall, University of
Tennessee, Knoxville, TN 37996-1301

66. Heather Booth, Department of Computer Science, Ayres Hall, University of Ten-
nessee, Knoxville, T N 37996-1301

67. Roger W. Brockett, Harvard University, Pierce Hall, 29 Oxford Street, Cambridge,
MA 02138

68. James C. Browne, Department of Computer Science, University of Texas, Austin,
T X 78712

69. Bill L. Buzbee, Scientific Computing Division, National Center for Atmospheric
Research, P.O. Box 3000, Boulder, CO 80307

70. Donald A. Calahan, Department of Electrical and Computer Engineering, Univer-
sity of Michigan, Ann Arbor, MI 48109

71. John Cavallini, Acting Director, Scientific Computing Staff, Applied Mathematical
Sciences, Office of Energy Research, U.S. Department of Energy, Washington, DC
20585

72. Ian Cavers, Department of Computer Science, University of British Columbia,
Vancouver, British Columbia V6T lW5, Canada

73. Tony Chan, Department of Mathematics, University of California, Los Angeles,
405 Hilgard Avenue, Los Angeles, CA 90024

74. Jagdish Chandra, Army Research Office, P.O. Box 12211, Research Triangle Park,
NC 27709

75. Eleanor Chu, Department of Computer Science, University of Waterloo, Waterloo,
Ontario, Canada N2L 3G1

76. Melvyn Ciment, National Science Foundation, 1800 G Street N.W., Washington,
DC 20550

77. Tom Coleman, Department of Computer Science, Cornell University, Ithaca, NY
14853

78. Paul Concus, Mathematics and Computing, Lawrence Berkeley Laboratory, Berke-
ley, CA 94720

79. Andy Conn, IBM T. J . Watson Research Center, P.O. Box 218, Yorktown Heights,
NY 10598

80. John M. Conroy, Supercomputer Research Center, 17100 Science Drive, Rowie,
MD 207154300

- 49 -

81. Jane K. Cullum, IBM T. J . \Vatson Research Center, P.O. Box 218, Yorktown
Heights, NY 10598

82. George Cybenko, Department of Math and Computer Science, Dartmouth College,
Hanover, KH 03755

83. George J . Davis, Department of Mathematics, Georgia State University, Atlanta,
GA 30303

84. Tim A. Davis, Computer and Information Sciences Department, 301 CSE, Uni-
versity of Florida, Gainesville, Florida 32611-2024

85. James Demmel, University of California, Computer Science Division, Berkeley,
CA 94720

86. Frederic Desprez, Laboratoire de l’hformation du Parallelisme, Ecole Normale
Superieure de Lyon, 46, Allee d’ltalie, 69364 Lyon Cedex 07, France

81. John J . Dorning, Department of Nuclear Engineering Physics, Thornton Hall,
McCormick Road, University of Virginia, Charlottesville, VA 22901

88. Donald J. Dudziak, Department of Nuclear Engineering, llOB Burlington Engi-
neering Labs, North Carolina State University, Raleigh, NC 276957909

89. Iain Duff, Numerical Analysis Group, Central Computing Department, Atlas Cen-
tre, Rutherford Appleton Laboratory, Didcot, Oxon OX11 OQX, England

90. Patricia Eberlein, Department of Computer Science, SUNY at Buffalo, Buffalo,
NY 14260

91. Stanley Eisenstat, Department of Computer Science, Yale University, P.O. Box
2158 Yale Station, New Haven, CT 06520

92. Lars Elden, Department of Mathematics, Linkoping University, 581 83 Linkoping,
Sweden

93. Howard C. Elman, Computer Science Department, University of Maryland, Col-
lege Park, MD 20742

94. Robert E. England, Mathematics and Computer Science Department, Northern
Kentucky University, Highland Heights, KY 41076-1448

95. Albert M. Erisman, Boeing Computer Services, P.O. Box 24346, M/S 7L-21, Seat-
tle, WA 981240346

96. Ian Foster, Mathematics and Computer Science Division, Argonne National Lab-

97. Geoffrey C. Fox, Northeast Parallel Architectures Center, 111 College Place, Syra-
cuse University, Syracuse, NY 132444100

98. Paul 0. Frederickson, Center for Research on Parallel Computation, MS B287,
Los Alamm National Laboratory, Los Marnos, NM 87545

99. Fred N. Fritsch, Computing & Mathematics and Statistics Division, Lawrence
Livermore National Laboratory, P.O. Box 808, L-316 Livermore, CA 94550

oratory, 9700 South Cass Avenue, Argonae, IL 60439

- 50 -

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

Robert E. Funderlic. Department of Computer Science. North Carolina State Uni-
versity, Raleigh, N C 27650

K. Gallivan, Computer Science Department, University of Illinois, trrbana, IL
61801

Dennis B. Gannon, Computer Science Department. Indiana University, Blooming-
ton, IK 47405

Feng Gao, Department of Computer Science, university of British Columbia, Van-
couver, British Columbia V6T 1W5, Canada

David M. Gay, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974

C. William Gear, Computer Science Department, University of Illinois, Urbana,
IL 61801

W. Morven Gentleman, Division of Electrical Engineering. National Research
Council, Building M-50, Room 344, Montreal Road, Ottawa, Ontario, Canada
KlA OR8

J. Alan George, Vice President, Academic and Provost, Needles Hall, University
of Waterloo, Waterloo, Ontario, Canada N2L 3G1

John R. Gilbert, Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo
Alto CA 94304

Gene H. Golub, Department of Computer Science, Stanford University, Stanford,
CA 94305

Joseph F. Grcar, Division 8245, Sandia National Laboratories, Livermore, CA
94551-0969

John Gustafson, 236 Wilhelm, Ames Laboratory, Iowa State University, Ames, IA
50011

Per Christian Hansen, UCI*C Lyngby, Building 305, Technical University of Den-
mark, DK-2800 Lyngby, Denmark

Richard Hanson, IMSL Inc., 2500 Park West Tower One, 2500 City West Blvd.,
Houston, TX 77042-3020

Michael T. Heath, NCSA, University of Illinois, 4157 Beckman Institute, 405 North
Matthews Avenue, Urbana, IL 61801-2300

Don E. Heller, Physics and Computer Science Department, Shell Development
Co., P.O. Box 481, Houston, T X 77001

Anthony J . G. Hey, University of Southampton, Dept. Electronics and Comp. Sci.,
Highfield, Southampton SO9 5NH, United Kingdom

Nicholas J . Higham, Department of Mathematics, University of Manchester, Grt
Manchester, M13 9PL, England

Charles J. Holland, Air Force Office of Scientific Research, Building 410, Bolling
Air Force Base, Washington, DC 20332

- 51 -

119. Fred Howes, Office of Scientific Computing ER-7, Applied Mathematical Sciences.
Ofice of Energy Research, U . S. Department of Energ, Wmhington, DC 20585

120. Robert E. Huddleston. Computation Department, Lawrence Livermore National
Laboratory, P.O. Box 808, Livermow. CA 94550

121. John Huseby, Cray Research Superservers, Inc., 3601 S. M'. Murray Blvd., Beaver-
ton, OR 97005

122. Ilse Ipsen, Department of Computer Science, Yale University, P.O. Box 2158 Yale
Station, New Haven, CT 06520

123. Elizabeth Jessup, University of Colorado, Department of Computer Science, Boul-
der, CO 80309-0430

124. Barry Joe, Department of Computer Science, University of Alberta, Edmonton,
Alberta T6G 2H1, Canada

125. Gary Johnson, Office of Scientific Computing ER-7, Applied Mathematical Sci-
ences, Office of Energy Research, U. S. Department of Energ, Washington, DC
20585

126. Lennart Johnsson, Thinking Machines Inc., 245 First Street, Cambridge, MA
02142-1214

127. Harry Jordan, Department of Electrical and Computer Engineering, University of
Colorado, Boulder, CO 80309

128. Bo Kagstrom, Institute of Information Processing, university of Umea, 5-901 87
Umea, Sweden

129. David K. Kahaner, Office of Naval Research - Asia, Roppongi 7-23-17, Minato-ku,
Tokyo 106, Japan

130. Malvyn 3. Kalos, Cornell Theory Center, Engineering and Theory Center Bldg.,

131. Hans Kaper, Mathematics and Computer Science Division, Argonne National Lab-

132. Linda Kaufman, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974

133. Robert J . Keel Division 8245, Sandia National Laboratories, Livermore, CA 94551-
0969

Cornell University, Ithaca, NY 14853-3901

oratory, 9700 South Cas Avenue, Bldg. 221, Argonne, IL 60439

134. Kenneth Kennedy, Department of Computer Science, Rice University, P.O. Box
1892, Houston, TX 77001

135. Eric S. Kirsch, Department of Computer Science, Ayres Hall, University of Ten-
nessee, Knoxville, TN 37996-1301

136. Thomas Kitchens, Department of Energy, Scientific Computing Staff, Office of
Energy Research, ER-7, Office G-236 Germantown, Washington, DC 20585

137. Michael A. Langston, Department of Computer Science, Ayres 3al1, University of
Tennessee, Knoxville, TN 37996-1301

- 52 -

136. Richard Lau, Office of Kava1 Research. Code I l l lhfA, 600 N . Quincy Street,
Boston Tower 1 Arlington, VA 22217-5000

139. Alan J . Laub, Department of Electrical arid Computer Engineering, University of
California, Santa Barbara. CA 93106

140. Robert 1,. Launer, Army Research Office, P.O. Box 12211, Research Triangle Park,
NC 27709

141. Charles Lawson, MS 301-490, Jet Propulsion Laboratory, 4800 Oak Grove Drive,
Pasadena, CA 91109

142, Peter D. Lax, Courant Institute of Mathematical Sciences, New York University,
251 Mercer Street, New York, NY 10012

143. James E. Leiss, Rt. 2, Box 142C, Broadway, VL4 22815

144. John G . Lewis, Boeing Computer Services, P.O. Box 24346, M/S 7L-21, Seattle,
WA 98124-0346

145. Jing Li, IMSL Inc., 2500 Park West Tower One, 2500 City West Blvd., Houston,
TX 77042-3020

146. Heather M. Liddell, Center for Parallel Computing, Department of Computer
Science and Statistics, Queen Mary Westfield, University of London, Mile End
Road, London El 4NS, England

147. Arno Liegmann, c/o ETH Rechenzentrum, Clausiusstr. 55, CH-8092 Zurich, Switzer-
land

148. Joseph Liu, Department of Computer Science, York University, 4700 Keele Street,
North York, Ontario, Canada M3J 1P3

149. Robert F. Lucas, Supercomputer Research Center, 17100 Science Drive, Bowie,
MD 20715-4300

150. Franklin Luk, Electrical Engineering Department, Cornel1 University, Ithaca, NY
14853

151. Brian A. Malloy, 216 Duke Street, Clemson, SC 29631

152. Thomas A. Manteuffel, Department of Mathematics, University of Colorado -
Denver, Campus Box 170, P.O. Box 173364, Denver, CO 80217-3364

153. John Martine, IBM Corporation, Dept. 85AA / Mail Station 276, Neighborhood
Road, Kingston, NY 12401

154. James McGraw, Lawrence Livermore National Laboratory, L-306, P.O. Box 808,
Livermore, CA 94550

155. Paul C. Messina, Mail Code 158-79, California Institute of Technology, 1201
E. California Blvd., Pasadena, CA 91125

156. Cleve Moler, The Mathworks, 24 Prime Park Way, Natick, MA 0176

157. Neville Moray, Department of Mechanical and Industrial Engineering, University
of Illinois, 1206 West Green Street, Urbana, IL 61801

- 53 ~

158. Dr. David Nelson, Director of Scientific Computing, ER-7, Applied Mathematical
Sciences. Office of Energy Research, U . S. Department of Energy, Washington.
DC 20585

159. Dianne P. O’Leary, Computer Science Department, University of Maryland, Col-
lege Park, MD 20742

160. James M . Ortega, Department of Applied Mathematics, Thornton Hall, University
of Virginia, Charlottesville, VA 22901

161. Charles F. Osgood, National Security Agency, Ft . George G . Meade, MD 20755

162. Steve Otto, Department of Computer Sci. & Eng., Oregon Graduate Institute,
19600 N.W. von Neumann Drive, Beaverton, OR 97006-1999

163. Chris Paige, OADDR, McGill University, McConnell Engineering Building 3480
University Street Montreal, PQ Canada H3A 2A7

164. Roy P. Pargas, Department of Computer Science, Clemson University, Clemson,
SC 29634-1906

165. Beresford N. Parlett, Department of Mathematics, University of California, Berke-
ley, CA 94720

166. Merrell Patrick, Department of Computer Science, Duke University, Durham, NC
27706

167. Daniel J. Pierce, b e i n g Computer Services, P.O. Box 24346, M/S 7L-21, Seattle,
WA 981240346

168. Robert J . Plemmons, Departments of Mathematics and Computer Science, Box
7311, Wake Forest University Winston-Salem, NC 27109

169. Jesse Poore, Department of Computer Science, Ayres Hall, University of Ten-
nessee, Knoxville, TN 37996-1301

170. Alex Pothen, Department of Computer Science, Pennsylvania State University,
University Park, PA 16802

171. Yuanchang Qi, IBM European Petroleum Application Center, P.O. Box 585, N-
4040 Hafrsfjord, Norway

172. Giuseppe Radicati, IBM European Center for Scientific and Engineering Comput-
ing, via del Giorgione 159, 1-00147 Roma, Italy

173. S. S. %vi, Department of Computer Science, LIS7A, 1400 Washington Avenue,
Albany, NY 12222

174. John K. Reid, Numerical Analysis Group, Central Computing Department, Atlas
Centre, Rutherford Appleton Laboratory, Didcot, Oxon OX1 1 OQX, England

175. Werner C. Rheinboldt, Department of Mathematics and Statistics, University of
Pittsburgh, Pittsburgh, PA 15260

176. John R. Rice, Computer Science Department, Purdue University, West Lafayette,
IN 47907

- 54 -

177. Garry Rodrigue, Xumerical Mathematics Group, Lawrence Livermore Laboratory,
Livermore, CA 94550

178. Donald J . Rose: Department of Computer Science, Duke Universit,?. Durham, NC
27706

179-183. Bill Rosener, Department of Computer Science, Ayres Hall. Vniversity of Ten-
nessee, Knoxville, T X 37996-1301

184. Edward Rothberg, Department of Computer Science, Stanford University, Stan-
ford, CA 94305

185. Axel Ruhe, Department of Computer Science, Chalmers University of Technology,
S-41296 Goteborg, Sweden

186. Joel Saltz, ICASE, MS 132C, NASA Langley Research Center, Hampton, VA
23665

187. Ahmed €I. Sameh, Center for Supercomputing R&D, 1384 W. Springfield Avenue,
University of Illinois, Urbana, IL 61801

188. Michael Saunders, Systems Optimization Laboratory, Operations Research De-
partment, Stanford University, Stanford, CA 94305

189. Robert Schreiber, RIACS, Mail Stop 230-5, NASA Ames Research Center, Moffet
Field, CA 94035

190. Martin H. Schultz, Department of Computer Science, Yale University, P.O. Box
2158 Yale Station, New Haven, CT 06520

191. David S. Scott, Intel Scientific Computers, 15201 N.W. Greenbrier Parkway, Beaver-
ton, OR 97006

192. Lawrence F. Shampine, Mathematics Department, Southern Methodist University,
Dallas, TX 75275

193. Andy Sherman, Department of Computer Science, Yale University, P.O. Box 2158
Yale Station, New Haven, CT 06520

194. Kermit Sigmon, Department of Mathematics, University of Florida, Gainesville,
FL 32611

195. Horst Simon, Mail Stop T045-1, NASA Ames Research Center, Moffett Field, CA
94035

196. Anthony Skjellum, Lawrence Livermore National Laboratory, 7000 East Ave., L-
316, P.O. Box 808 Livermore, CA 94551

197. Danny C. Sorensen, Department of Mathematical Sciences, Rice University, P. 0. Box
1892, Houston, TX 772.51

198. G. W. Stewart, Computer Science Department, University of Maryland, College
Park, MD 20742

199. Paul N. Swartztrauber, National Center for Atmcspheric Research, P.O. Box 3000,
Boulder, CO 80307

- 55 -

200. Michael G. Thomason, Department of Computer Science, Ayres Hall, University
of Tennessee, Knoxville, TN 37996-1301

201. Philippe Toint, Department of Mathematics, University of Namur, FUNOP, 61
rue de Bruxelles, B-Namur, Belgium

202. Bernard Tourancheau, LIP, ENS-Lyon. 69364 Lyon cedex 07, France

203. Anna Tsao, Supercomputing Research Center, 17100 Science Drive, Bowie, MD
20715

204. Robert van de Geijn, The University of Texas, Department of Computer Sciences,
TAI 2.124, Austin, TX 78712

205. Hank Van der Vorst, Dept. of Techn. Mathematics and Comp. Sci., Delft Uni-
versity of Technology, P.O. Box 356, NL-2600 AJ Delft, The Netherlands

206. Charles Van Loan, Department of Computer Science, Cornell University, Ithaca,
NY 14853

207. Jim M. Varah, Centre for Integrated Computer Systems Research, University of
British Columbia, Office 2053-2324 Main Mall, Vancouver, British Columbia V6T
1W5, Canada

208. Udaya B. Vemulapati, Department of Computer Science, University of Central
Florida, Orlando, FL 32816-0362

209. Robert G. Voigt, National Science Foundation, Room 417, 1800 G Street, N.W.,
Washington, DC 20550

210. Phuong Vu, Cray Research, Inc., 1345 Northland Dr., Mendota Heights, MN
55 120

211. Kevin Wadleigh, Convex Computer Corporation, 3000 Waterview Parkway, P. 0.
Box 833851, M.S. MAR, Richardson, TX 75083-3851

212. Daniel D. Warner, Department of Mathematical Sciences, 0-104 Martin Hall,
Clemson University, Clemson, SC 29631

213. Gilbert G. Weigand, Computing Systems Technology Office, Advanced Research
Projects Agency, 3701 North Fairfax Drive, Arlington, VA 22203-1714

214. Mary F. Wheeler, Rice University, Department of Mathematical Sciences, P.O. Box
1892, Houston, TX 77251

215. Andrew B. White, Computing Division, Los Alamos National Laboratory, P.O. Box
1663, MS-265, LOS Alamos, NM 87545

216. Michael Wolfe, Department of Computer Sci. & Eng., Oregon Graduate Institute,
19600 N.W. von Neumann Drive, Beaverton, OR 97006-1999

217. David Womble, Sandia National Laboratories, Numerical Mathematics Division
1422, P. 0. Box 5800 Albuquerque, NM 87185

218. Margaret Wright, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ
07974

- 56 -

219. David Young, University of Texas. Center for Iiumerical Analysis, RLM 13.150,
Austin, TX 78731

220. Earl Zmijewski, Department of Computer Science, University of California, Santa
Barbara, CA 93106

221. Office of Assistant Manager for Energy Research and Development, U S . Depart-
ment of Energy, Oak Ridge Operations Office, P.O. Box 2001 Oak Ridge, TN
37831-8600

222-223. Office of Scientific &, Technical Information, P.O. Box 62, Oak Ridge, T N 37830

